

August 30, 2005

Mr. Rick Liebold County of Sacramento Environmental Management Department 8475 Jackson Road, Suite 230 Sacramento, California 95826

Subject:

Additional Investigation Results Report

Former Elk Grove Ford Facility

9483/9499 Stockton Boulevard, Elk Grove, California

Apex Project No. CCH01.001

Dear Mr Liebold:

Apex Envirotech, Inc. (Apex), has been authorized by the Calvary Christian Center (Calvary) to provide this results report for additional soil sampling of two direct-push soil borings to vertically define the extent of contamination in soil and sampling of the domestic well at the subject property (Figures 1 and 2). This report was prepared in response to the Sacramento County Environmental Management Department (SCEMD) email correspondence of July 14, 2005 (Appendix A)

This report has been developed, in part, on the basis of information obtained by Apex from Calvary and is subject to modification as newly acquired information may warrant

SITE DESCRIPTION

Prior to the purchase of the site located at 9483 and 9499 East Stockton Boulevard, the property was owned and operated by the Elk Grove Ford Dealership The former Elk Grove Ford Dealership was constructed between 1961 and 1968 Site improvements were made between 1975 and 1987. The property consists of two buildings joined by a canopy accessing the rear parking lot and a domestic water well with an inoperable pump and a 5,000-gallon holding tank.

BACKGROUND

August 29, 1986 - Three underground storage tanks (USTs) were removed from beneath the canopy area, two 1,000-gallon fuel USTs and one 500-gallon waste oil UST.

February 27, 2003 - GRIBI Associates (GRIBI) was contracted to conduct a Phase I site assessment for Calvary. Upon completion of the file review, GRIBI recommended conducting a Phase II to determine the possibility that soil and groundwater contamination exists from past site activities.

March 11 and 12, 2003 - GRIBI conducted a site assessment including drilling and sampling of 11 soil borings. The 11 soil borings were advanced using a hand auger, and nine additional soil borings were installed using a hollow stem auger. Soil samples were analyzed for hydrocarbons and metals. The laboratory results indicated the presence of gasoline, diesel, motor oil, volatile organic compounds, and CAM 5 metals (cadmium, chromium, lead, nickel, and zinc).

March 25, 2003 - GRIBI submitted a Phase II site assessment report to Calvary concluding that soil contamination is possibly a result of the former USTs, waste oil fill pipe, and/or the oil/water separator from the former vehicle wash area.

On May 26 and 27, 2005, Apex personnel supervised the installation and sampling of seven direct-push soil borings (GP-1 through GP-7Ang) to attempt to define the vertical and lateral extent of hydrocarbon contamination at the site In addition Apex personnel performed a physical search of the area as part of a sensitive receptor survey (SRS)

May 31, 2005 – Apex personnel conducted a well search at the California Department of Water Resources to locate any domestic or municipal wells within a 2,000-foot radius of the subject site as part of the SRS.

June 2, 2005 – Apex submitted Subsurface Investigation, Sensitive Receptor Survey
Site Conceptual Model and Closure Request, detailing the results of the geoprobe investigation
and sensitive receptor survey Apex compiled a sensitive receptor survey for the site and noted
that though petroleum hydrocarbon concentrations were detected at a depth of 21 5-ft below
ground surface (bgs) in boring GP-2, the order of magnitude was two times less that detected at
4-ft bgs and was likely caused by down-drag or cross-contamination during drilling activities. In
addition Apex noted that analytical data from adjacent borings indicated that concentrations of
petroleum hydrocarbons were confined in clay and tight silts above 10-feet bgs. Given the deep
water table (100-feet bgs) and the confining nature of the surrounding subsurface, Apex
recommended that the site be granted No Further Action status as the remaining hydrocarbons in
soil would not pose a danger or risk to public health

July 14, 2005 – The SCEMD, requested that one additional boring be sampled "very close" to GP-2 at a depth greater than 21.5-feet bgs and analyzed for total petroleum hydrocarbons as gasoline (TPHg), and the full suite of volatiles by USEPA method 8260 including five oxygenates and 1,2-dichloroethane In addition the SCEMD requested that a groundwater sample be obtained from the onsite domestic well and analyzed for TPHg, semi-volatiles by USEPA method 8270 and volatiles by USEPA method 8260.

DIRECT-PUSH SOIL BORINGS AND SAMPLING

On August 5, 2005, Apex personnel supervised the installation and sampling of one direct-push soil boring (GP-2B) located as shown on Figure 3. The boring was drilled by Vironex, of San Leandro, California. However the boring location was not close enough to GP-2 so on August 22, 2005, Apex personnel supervised the installation and sampling of one additional direct-push soil boring (GP-2C) by Woodward Drilling Co. of Rio Vista, California. Both borings were installed and sampled according to the Apex standard operating procedures (SOP) included as Appendix B.

Boring GP-2B was continuously sampled to a depth of 45-feet bgs. Boring GP-2C was continuously sampled but encountered refusal at 20-feet bgs. Woodward moved off the boring and used 2-inch solid rod augers to drill to a depth of 30-feet bgs. The direct-push tube was advance down the open borehole and samples were collected to a depth of 36-ft bgs.

Soil samples collected from soil borings GP-2B and GB-2C were submitted, under chain-of-custody (COC) documentation, to California Laboratory Services (CLS), of Rancho Cordova, California, a California state-certified laboratory, for analysis of:

Analysis	Abbreviation	Designation	USEPA Method No.
Total Petroleum Hydrocarbons as Gasoline	TPHg	Fuel-Range Hydrocarbons	8015 Modified
Benzene		Aromatic	
Toluene	BTEX	Volatile	8021B
Ethylbenzene	BIEV	Organics	00216
Xylenes (Total)		Organics	
Volatile Organic Compounds	VOCs		8260B
1,2-Dichloroethane	1,2-DCA	Lead Scavenger	8260B

Table 1 summarizes the comprehensive soil analytical results for the project. Copies of the laboratory analytical reports and COC forms for the most recent activities are included in Appendix C.

DOMESTIC WELL SAMPLING

On August 10, 2005, Apex personnel collected a groundwater sample from the onsite domestic well. The sample was submitted, under COC documentation, to CLS, of Rancho Cordova, California, a California state-certified laboratory, for analysis of:

Analysis	Abbreviation	Designation	USEPA Method No.
Total Petroleum Hydrocarbons as Gasoline	TPHg	Fuel-Range Hydrocarbons	8015 Modified
Volatile Organic Compounds	VOCs		8260B
Semi-Volatile Organic Compounds	SVOCs		8270

Table 2 summarizes the groundwater analytical results for the domestic well sample. Copies of the laboratory analytical report and COC form are included in Appendix C.

CONCLUSIONS AND RECOMMENDATIONS

Based on soil laboratory analytical results, the subject site has been impacted by petroleum hydrocarbons in the vicinity of the former USTs. Laboratory analytical results for samples collected from borings GP-2B and GP-2C were below laboratory detection limits for all constituents of concern. In addition groundwater laboratory analytical results for the onsite domestic well were below laboratory detection limits for all constituents of concern.

Though the subject site has been impacted by petroleum hydrocarbons in the vicinity of the former USTs, current analytical data indicates that concentrations of petroleum hydrocarbons have not impacted groundwater and are confined in clay and tight silts above 10-feet bgs

Due to the deep water table (100-feet bgs) and the confining nature of the surrounding subsurface, Apex believes that the remaining in soil contamination does not pose a danger or risk to public health and recommends that the site be granted No Further Action status

Additional Investigation Results Report

Former Elk Grove Ford Facility, 9483/9499 Stockton Boulevard, Elk Grove, California Page 5

REPORT DISTRIBUTION

A copy of this report was submitted to:

Regulatory Oversight:

Mr Rick Liebold

County of Sacramento

Environmental Management Department

8475 Jackson Road, Suite 230 Sacramento, California 95826

(916) 875-8550

Responsible Party:

Mr Thaxter Arterberry

Calvary Christian Center

PO Box 15010

Sacramento, California 95851

REMARKS/ SIGNATURES

The information contained within this report reflects our professional opinions and was developed in accordance with currently available information, and accepted hydrogeologic and engineering practices.

The work described above was performed under the direct supervision of the professional geologist, registered with the State of California, whose signature appears below

We appreciate the opportunity to provide you geologic, engineering and environmental consulting services, and trust this report meets your needs. If you have any questions or comments, please call us at (916) 851-0174

Sincerely,

APEX ENVIROTECH INC.

Rebekah A Westrup Project Manager

Michael S. Sgourakis, R.G.

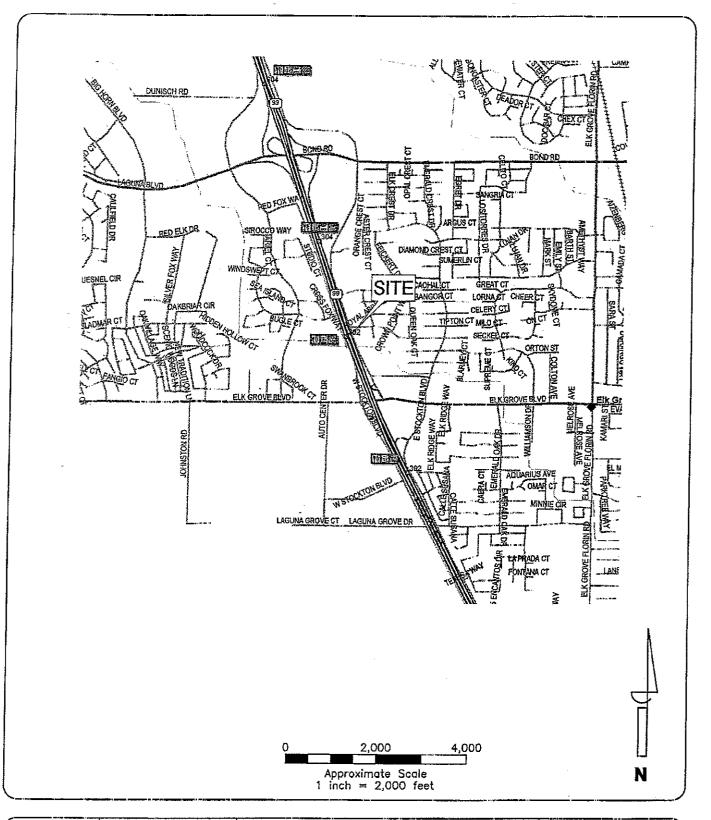
Senior Geologist

CRG No. 7194

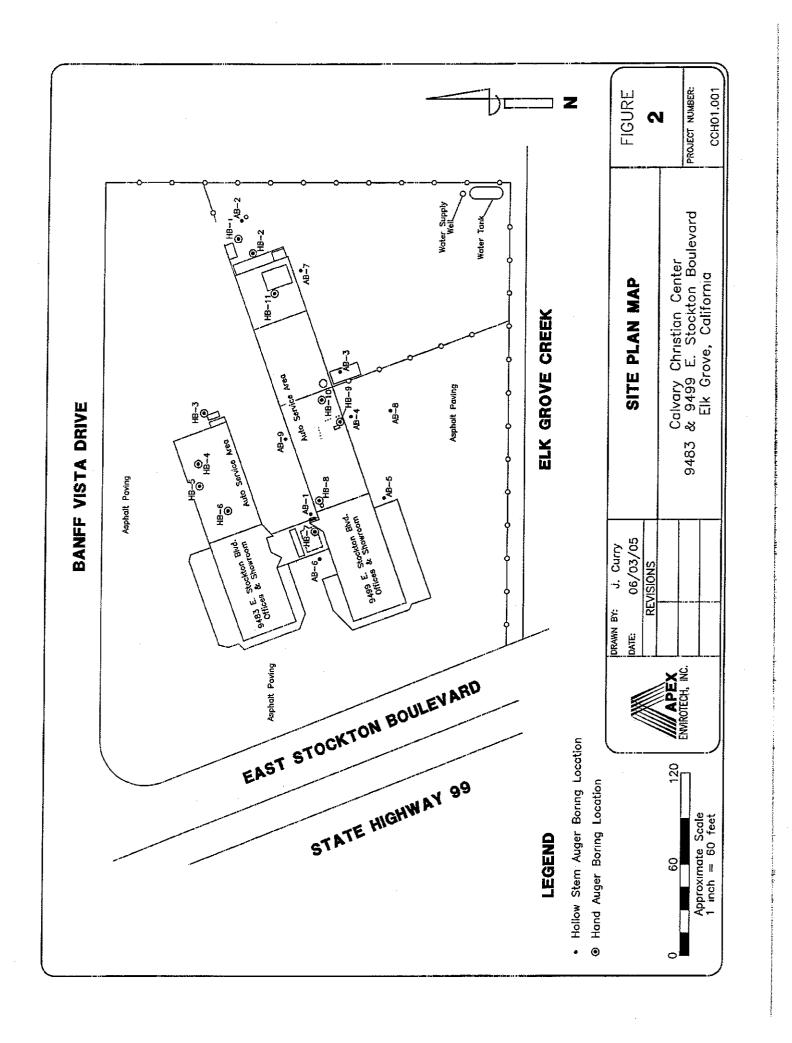
MICHAEL

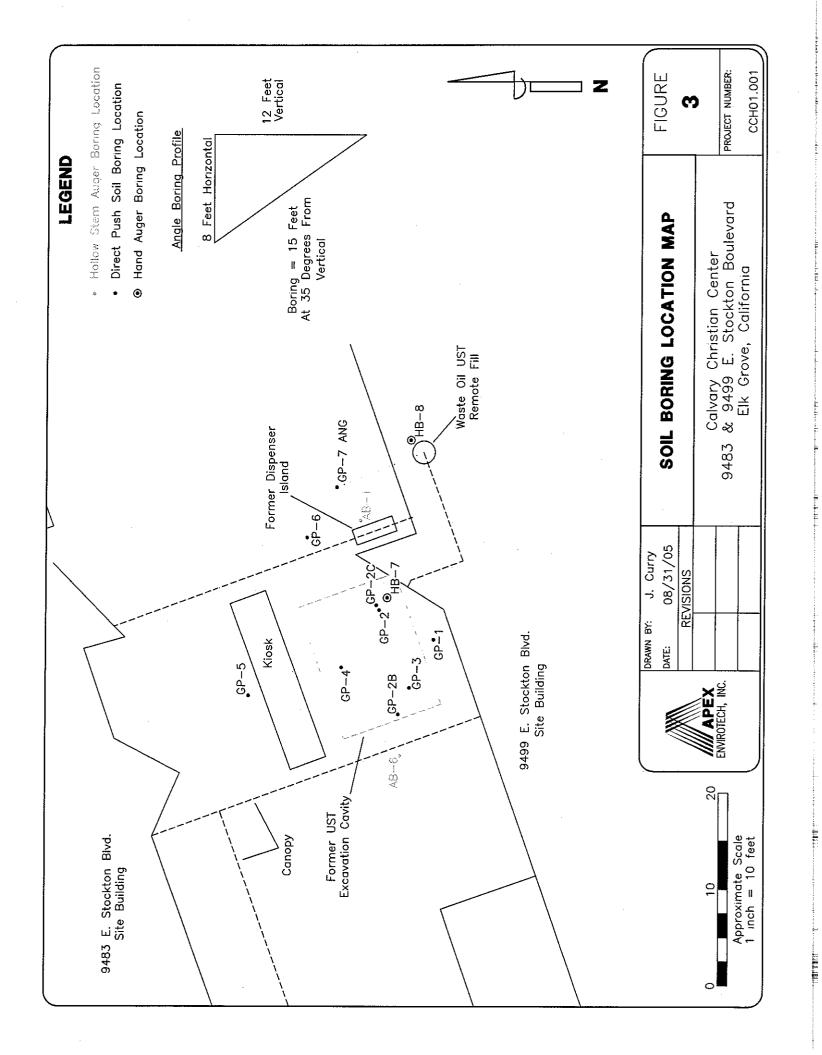
MICHAEL

SGOURAKIS


NO 7184

Additional Investigation Results ReportFormer Elk Grove Ford Facility, 9483/9499 Stockton Boulevard, Elk Grove, California Page 7


FIGURES:


FIGURE 1 SITE VIC	INITY MAP
FIGURE 2 SITE	PLAN MAP
FIGURE 3 SOIL BORING LOCA	ATION MAP
TABLE:	
TABLE 1 HISTORICAL SOIL ANALYT	ICAL DATA
TABLE 2 GROUNDWATER ANALYT	CAL DATA
APPENDICES:	
APPENDIX A SCEMD CORRESP DATED JU	PONDANCE LY 14, 2005
APPENDIX B APEX STANDARD OPERATING PRO	OCEDURES
APPENDIX C LABORATORY ANALYTICA CHAIN-OF-CUST	

FIGURES

ſ	DRAWN BY: J CUTT DATE: 06/03/0 REVISIONS		FIGURE
APEX ENVIROTECH, INC		Calvary Christian Center 9483 & 9499 E Stockton Boulevard Elk Grove, California	PROJECT NUMBER:

TABLES

TABLE 1 HISTORICAL SOIL ANALYTICAL DATA Calvary Christian Center 9483 9499 East Stockton Boulevard, Elk Grove, California

	1		1							_			_	-																_	_	
	Zn	(mg/kg)		39	}	90	3 8	; ;	I	Į	25	6	22		9	7	3			i	I	1	l	1	34	; ;	ł	l	l	ł	1	l
	Ž	(mg/kg)		35	}	29	3 5	2	ļ		25	22	42	! !	7,	+	2			i	i	i	i	ı	77		ŀ	}	1	1	ļ	I
CAM 5	Pb	(mg/kg)		0.9		6.7	- 0	}	ŀ	ŀ	0.6	2.7	7.8	<u> </u>	ų		8.1			ļ	!	!	!	ı	3.4	1	1		ŀ		ı	I
	Ö	(mg/kg)		57	:	33	90	}	ļ		35	26	69	1	40	=	47			. !	;	1	i	ŀ	30	: i	i			1	***	ł
	B	(mg/kg)		<2.0		000	000	i !	i	i	<2.0	<2.0	<2.0	· ,	000	\$ \$ \$	<2.0			!					<2.0	1	i	ł	i	ŀ	i	ı
NOC		(mg/kg)	-	<0.002	: 1	ļ	ļ	<0.00	<0.002	52.24	265.99	0.0068	7.6		\$0.00 V	<0.002	<0.002			1	<0.002	-		;	<0.002	i	ł	<0.002	<0.002	<0.002	1	<0.002
MTBE		(mg/kg)		<0.004		1	ļ	<0.00	<0.004	<0.004	<0.004	<0.004	<0.004		0.081	₹0.00	<0.004			<0.020	<0.004	!	ļ		<0.004	i	ŀ	<0.004	<0.004	<0.004	<0.020	<0.004
Total	Xylenes	(mg/kg)		<0.002	<u></u>	1		<0.002	<0.002	0.182	151	0.0052	1.07	ł	<0.00>	<0.002	<0.002			<0.010	<0.002	}		į	<0.002	1	1	<0.002	<0.002	<0.002	<0.010	<0.002
Ethyl	benzene	(mg/kg)		<0.002	-		ŀ	<0.002	<0.002	<0.002	6.6	<0.002	<0.002	i	<0.002	<0.002	<0.002			<0.005	<0.002	!	!	!	<0.002	!		<0.002	<0.002	<0.002	<0.005	<0.002
Toluene		(mg/kg)		<0.002	1	1		<0.002	<0.002	<0.002	0.880	<0.002	<0.002	•	<0.002	<0.002	<0.002			<0.005	<0.002			1	<0.002	!	-	<0.002	<0.002	<0.002	<0.005	<0.002
Benzene		(mg/kg)		<0.002	ı		1	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	1	<0.002	<0.002	<0.002			<0.005	<0.002	1	1	i	<0.002	1	1	<0.002	<0.002	<0.002	<0.005	<0.002
	Motor Oil	(mg/kg)		~10	<10	<10	<10	×10	120	~10 ~10	√ 10	<10 <10	<10	2,000	×10	۸ 10	1			<10	<10	×10	×10	<10	46	<10	<10	×10	×10	ı	×10	₽
TPH as	Diesel	(mg/kg)		√10 <10	<10	<10	<10	<10	51	290	2,200	<10	28	1,300	<10	×10	ŀ			<0.50	<0.10	ŀ	ı	ì	<0.10	1	1	<0.10	<0.10	<0.10	<0.50	<0.10
	Gasoline	(mg/kg)		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	240	1,200	<0.50	40	1	<0.10	<0.10	<0.10			<10	×10	<10	√10 √10	~10 ~10	120	×10	×10	410	۲0 م	ì	70	ا
Sample				03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03			03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03	03/11/03
Sample	Depth	(ft)		1.0	3.0	4.5	4.0	3.0	1.5	2.0	4.0	11.5	21.5	2.0	1.5	1.0	2.5			6.0	4.0	1.0	5.5	4.0	8.5	14.5	9.5	9.5	19.5	4.5	4.5	4.5
Sample	<u> </u>		Hand Auger (GRIBI)	HB-1-1.0	HB-1-3.0	HB2-4.5	HB-3-4.0	HB-4-3.0	HB-5-1.5	HB-7-2.0	HB-7-4.0	HB-7-11.5**	HB-7-21.5**	HB-8-2.0	HB-9-1.5	HB-10-1.0	HB-11-2.5	Hollow Stem Auger	(GKIBI)	AB-1-6.0	AB-2-4.0	AB-3-1.0	AB-3-5.5	AB-4-4.0	AB-4-8.5	AB-4-14.5	AB-5-9.5	AB-6-9.5	AB-6-19.5	AB-7-4.5	AB-8-4.5	AB-9-4.5

HISTORICAL SOIL ANALYTICAL DATA TABLE 1

Calvary Christian Center 9483 9499 East Stockton Boulevard, Elk Grove, California

Depth Date (ft) (ft)	<u> </u>	Gasoline	Diagol		•		•								
				Motor Oil	,		penzene			<u> </u>	25	స	Pb	Z	Zn
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
		<0.50	×10	۲ 10	<0.0050	<0.0050	<0.0050	<0.015	i	-	ì	ŀ	ì	}	
		<0.50	95	<10	<0.0050	<0.0050	<0.0050	<0.015	ı	į	;	!	1	1	l
_		<0.50	01 ∨	×10	<0.0050	<0.0050	<0.0050	<0.015	1	i	1	ļ	ł	1	!
_		<0.50	<10	<10	<0.0050	<0.0050	<0.0050	<0.015	1		1	1		1	ŀ
		<0.50	<10 <10	01√ V	<0.0050	<0.0050	<0.0050	<0.015			!	1	1	ŀ	}
10 05/26/05		<0.50	<10	<10	<0.0050	<0.0050	<0.0050	<0.015	1		1	;	I		ł
4 05/27/05		<0.50	<10	<10	<0.0050	<0.0050	<0.0050	<0.015	-	-		ļ	1	1	į
10 05/27/05		<0.50	40	<10	<0.0050	<0.0050	<0.0050	<0.015	1	ļ		1	I	ļ	l
4 05/27/05		<0.50	√10 √10	√10 √10	<0.0050	<0.0050	<0.0050	<0.015	1	}	-	ŀ	1	ł	ł
10 05/27/05		<0.50	<u>م</u>	410	<0.0050	<0.0050	<0.0050	<0.015	1	1	-				i
GP-7Ang -11.5 05/27/05	1,05	1	ı	i	1	1	I	<0.015	1	<2.0	<2.0	54	3.4	73	45
30	3/05	0.1^	į	1	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	\$		-	ı		1
GP-2B-45 45 08/05/05	3/05	۲.0 ۲.0	I	1	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	A	ı	ı	ı	1	1
33.5	2/05	<1.0	ı	ı	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	€	i	j	!	ı	į
GP-2C-35 35.5 08/22/05	2/05	<1.0	!		<0.0050	<0.0050	<0.0050	<0.010	<0.0050	Ą	ı	!	ı	1	1
Additional analytes GP-7Ang-11.5 - was analyzed for PCBs, PNAs, VOCs and SVOCs, all associated consituents were below laboratory detection limits	— s' 00Cs	and SVOCs	s, all associate	ed consituent	ts were belov	 w laboratory	detection lim	iits							
GP-2B-30 - was analyzed for full VOCs by 8260 including 5 oxygenates and 1,2-DCA, all constituents were below laboratory detection limits. GP-2B-45 - was analyzed for full VOCs by 8260 including 5 oxygenates and 1,2-DCA, all constituents were below laboratory detection limits.	+ 60 includi 60 includi	ing 5 oxyger ing 5 oxyger ing 5 oxyger	nates and 1,2 nates and 1,2	-DCA, all cor -DCA, all cor	 nstituents we nstituents we	are below lat are below lat) oratory detectory detectory	ction limits.							
GP-2C-33.5 - was analyzed for full VOCs by 8260 including 5 oxygenates and 1,2-DCA, all constituents were below laboratory detection limits. GP-2C-35.5 - was analyzed for full VOCs by 8260 including 5 oxygenates and 1,2-DCA, all constituents were below laboratory detection limits.	 3260 inctu 3260 inctu 	ا کرxo کے goryc Jding 5 oxyc	jenates and 1 jenates and 1	 ,2-DCA, all c ,2-DCA, all c	onstituents vonstituents v	wère below l were below l	 aboratory det aboratory det 	tection limits tection limits	,,,						

NOTES:

TPH - Total Petroleum Hydrocarbon MTBE - Methyl Terliary Butyl Ether Cd - Cadmium Cr - Chromium

Pb - Lead
Ni - Nickel
Zn - Zinc
VOC - Volatile Organic Compounds

< Below Laboratory Detection Limit -- -Not analyzed

mg/kg - miligrams per kilograms * - Hollow stem auger was used to complete boring

GROUNDWATER ANALYTICAL DATA TABLE 2

9483 9499 East Stockton Boulevard, Elk Grove, California Calvary Christian Center

	SVOCS	8270C	(mg/L)	QN	
5	VOCS	8260B	(mg/L)	QN	
	TPH as	8015M	(mg/L)	<50	
	Sample	2		03/11/03	
	Sample	1		Domestic Well	

NOTES:

TPH - Total Petroleum Hydrocarbon
VOC -Volatile Organic Compounds
SVOC - Semi-Volatile Organic Compounds
< - Below Laboratory Detection Limit
ND - Below Laboratory Detection Limit for Entire Suite
ug/L - micrograms per Liter

APPENDIX A

SCEMD CORRESPONDANE DATED JULY 14, 2005

Mike Sgourakis

From:

Leibold Rick [LeiboldR@saccounty.net]

Sent:

Thursday, July 14, 2005 9:55 AM

To:

Mike Sqourakis

Subject:

Calvary Christian 9483 stockton

Two things were required to be completed before a final conclusion on the site can be determined

- A boring will be required very near GP-2 and HB-7 that extends below the contaminant level found in HB-7 at 21 5 feet below grade. This is necessary to complete the vertical defintion of the contamination found in HB-7. Analyze for TPHg and the full 8260 including the five oxys and 1,2-DCA.
- The onsite well has to be sampled for the full suite of water parameters. TPHg, 8260 and 8270. If both of these issues are completed and the results are good then the site will be closeable.

Please call me if you have any questions.

This email and any attachments thereto may contain private, confidential, and privileged material for the sole use of the intended recipient. Any review, copying, or distribution of this email (or any attachments thereto) by other than the County of Sacramento or the intended recipient is strictly prohibited.

If you are not the intended recipient, please contact the sender immediately and permanently delete the original and any copies of this email and any attachments thereto.

APPENDIX B APEX STANDARD OPERATING PROCEDURES

APEX ENVIROTECH, INC. STANDARD OPERATING PROCEDURES Soil Borings

SOP-1 SOIL BORING SAMPLING

During drilling, soil samples for chemical analysis are collected in thin-walled brass tubes, of varying diameters and lengths (e.g., 4 or 6 inches long by 2 inches outside diameter). Three or four of the selected tubes, plus a spacer tube, are set in an 18-inch long split-barrel sampler of the appropriate inside-diameter.

Where possible, the split-barrel sampler is driven its entire length either hydraulically or using a 140-pound drop hammer. The sampler is extracted from the borehole and the brass tubes, containing the soil samples, are removed. Upon removal from the sampler, the selected brass tubes are either immediately trimmed and capped with aluminum foil or "Teflon" sheets and plastic caps or the samples are extruded from the tubes and sealed within other appropriate, cleaned sample containers. The samples are then hermetically sealed, labeled, and refrigerated for delivery, under strict chain-of-custody, to the analytical laboratory. These procedures minimize the potential for cross-contamination and volatilization of volatile organic compounds (VOC) prior to chemical analysis.

One soil sample collected at each sampling interval is analyzed in the field using either a portable photoionization detector (PID), flame ionization detector, organic vapor analyzer, catalytic gas detector, or an explosimeter. The purpose of this field analysis is to qualitatively determine the presence or absence of hydrocarbons, and the samples to be analyzed at the Jaboratory. The soil sample is sealed in either a brass tube, glass jar, or plastic bag to allow for some volatilization of VOC. The PIO is then used to measure the concentrations of hydrocarbons within the containers's headspace. The data is recorded on both field notes and the boring logs at the depth corresponding to the sampling point.

Other soil samples are collected to document the soil and/or stratigraphic profile beneath the project site, and estimate the relative permeability of the subsurface materials. All drilling and sampling equipment are either steam cleaned or washed in solution and doubly rinsed in deionized water prior to use at each site and between boreholes to minimize the potential for cross-contamination.

In the event the soil samples cannot be submitted to the analytical laboratory on the same day they are collected (e.g., due to weekends or holidays), the samples are temporarily stored until the first opportunity for submittal either on ice in a cooler, such as when in the field, or in a refrigerator at Apex's office.

SOP-3 SOIL CLASSIFICATION

Soil samples are classified according to the Unified Soil Classification System. Representative portions of the samples may be submitted, under strict chain-of-custody, to an analytical laboratory for further examination and verification of the in-field classification and analysis of soil mechanical and/or petrophysical properties. The soil types are indicated on logs of either excavations or borings together with depths corresponding to the sampling points and other pertinent information.

SOP-4 SAMPLE IDENTIFICATION AND CHAINOF-CUSTODY PROCEDURES

Sample identification and chain-of-custody procedures ensure sample integrity as well as document sample possession from the time of collection to ultimate disposal Each sample container submitted for analysis is labeled to identify the job number, date, time of sample collection, a sample number unique to the sample, any in-field measurements made, sampling methodology, name(s) of onsite personnel, and any other pertinent field observations also recorded on the field excavation or boring log

Chain-of-custody forms are used to record possession of the sample from time of collection to arrival at the laboratory. During shipment, the person with custody of the samples will relinquish them to the next person by signing the chain-of-custody form(s) and noting the date and time. The sample-control officer at the laboratory will verify sample integrity, correct preservation, confirm collection in the proper container(s), and ensure adequate volume for analysis.

If these conditions are met, the samples will be assigned unique laboratory log numbers for identification throughout analysis and reporting. The log numbers will be recorded on the chain-of-custody forms and in the legally-required log book maintained in the laboratory. The sample description, date received, client's name, and any other relevant information will also be recorded.

SOP-5 LABORATORY ANALYTICAL QUALITY ASSURANCE AND CONTROL

In addition to routine instrument calibration, replicates, spikes, blanks, spiked blanks, and certified reference materials are routinely analyzed at method-specific frequencies to monitor precision and bias. Additional components of the laboratory Quality Assurance/Quality Control program include:

- Participation in state and federal laboratory accreditation/certification programs;
- Participation in both U.S. EPA Performance Evaluation studies (WS and WP studies) and interlaboratory performance evaluation programs;
- Standard operating procedures describing routine and periodic instrument maintenance;
- "Out-of-Control"/Corrective Action documentation procedures; and,
- Multi-level review of raw data and client reports...

APPENDIX C

LABORATORY ANALYTICAL REPORT CHAIN-OF-CUSTODY FORM

3249 Fitzgerald Road Rancho Cordova, CA 95742

August 15, 2005

CLS Work Order #: COH0285 COC #: 53513

Rebekah Westrup APEX Envirotech Inc. - Gold River 11244 Pyrites Way Gold River, CA 95670

Project Name: Calvary Christian Church

Enclosed are the results of analyses for samples received by the laboratory on 08/08/05 08:40. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

CALIFORNIA LABORATORY SERVICES

08/15/05 09:33

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670

Project: Calvary Christian Church CLS Work Order #: COH0285

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53513

TPH-Gasoline by GC FID

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-2B-30 (COH0285-01) Soil	Sampled: 08/05/05 07:53	Received	: 08/08/05	08:40					
Gasoline	ND	1.0	mg/kg	1	CO06051	08/10/05	08/10/05	EPA 8015M	
Surrogate. o-Chlorotoluene (Gas	s)	95 7 %	65-1	135	n	n	"	н	
GP-2B-45 (COH0285-02) Soil	Sampled: 08/05/05 08:33	Received	: 08/08/05	08:40					
Gasoline	ND	1 0	mg/kg	1	CO06051	08/10/05	08/10/05	EPA 8015M	
Surrogate o-Chlorotoluene (Gas	;)	962%	65-1	135	n	"	н	rr .	

08/15/05 09:33

APEX Envirotech Inc - Gold River

Project: Calvary Christian Church CLS Work Order #: COH0285

11244 Pyrites Way

Project Number: CCH01 001

COC #: 53513

Gold River, CA 95670 Project Manager: Rebekah Westrup

Volatile Organic Compounds by EPA Method 8260B

ł							*		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
GP-2B-30 (COH0285-01) Soil	Sampled: 08/05/05 07:53	Received	: 08/08/0:	5 08:40					
Acetone	ND	100	μg/kg	1	CO06021	08/10/05	08/10/05	EPA 8260B	
Benzene	ND	5 0	11	II.	U	D	n	II	
Bromobenzene	ND	5 0	и .	11	17	II.	IV.	II .	
Bromochloromethane	ND	5 0	u	H	11		17	II	
Bromodichloromethane	ND	5 0	II .	Ħ	n	**	ı	II .	
Bromoform	ND	5.0	ij	N	IT	**	H	ш	
Bromomethane	ND	10	D	н	It	И	14	IJ	
2-Butanone	ND	100	It	tl	11	**	п	IJ	
n-Butylbenzene	ND	5 0	Ħ	11	11	(I	Ħ	n	
sec-Butylbenzene	ND	5 0	п	"	q	"	n	n	
tert-Butylbenzene	ND	5 0	п	U	u	II .	u	т .	
Carbon tetrachloride	ND	5 0	0	IP	11	U	U	tt.	
Chlorobenzene	ND	5 0	0	Ħ	U	U	II .	11	
Chloroethane	ND	5.0	n	н	IF	11	IJ	п	
Chloroform	ND	5.0	"	r	н	H	17	U	
Chloromethane	ND	10	Ħ	11	n	*1	IF	0	
o-Chlorotoluene	ND	5 0	н	11	11	11	n	U	
p-Chlorotoluene	ND	5 0	н	a	u	u	n	Ü	
Dibromochloromethane	ND	5 0	(1	D	II	u	n	n	
1,2-Dibromo-3-chloropropane	ND	10	11	D	U	U	σ	11	
1,2-Dibromoethane (EDB)	ND	5.0	0	n	II .	U	U	P	
Dibromomethane	ND	5.0	O	H	U	U	0	17	
1,2-Dichlorobenzene	ND	5.0	D.	н	n	n	0	a	
1,3-Dichlorobenzene	ND	5.0	ji .	11	н	н	P	ū	
1,4-Dichlorobenzene	ND	5 0	и	9	н	41	H	п	
Dichlorodifluoromethane (Freon 1		10	н	v	11	a	ii.	II .	
1,1-Dichloroethane	ND	5 0	н	U	11	ø	n	11	
1,2-Dichloroethane	ND	5.0	11	0	11	u	ti	II .	
1,1-Dichloroethene	ND	5 0	11	1)	n .	п	11	ıi	
cis-1,2-Dichloroethene	ND	5.0	u	11	n .	0	11	H	
trans-1,2-Dichloroethene	ND	5.0	U	ır	11	II .	ø	n	
1,2-Dichloropropane	ND	5.0	U	Ħ	U	II .	0	II .	
1,3-Dichloropropane	ND	5.0	U	н	D	II .	0	"	
2,2-Dichloropropane	ND	5.0	II	ri	II.	II.	o o	n	
1,1-Dichloropropene	ND	5.0	n	н	If	1)	п	н	
1,1-Dieniotoptopone	110	20							

CA DOHS ELAP Accreditation/Registration Number 1233

08/15/05 09:33

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0285

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC#: 53513

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-2B-30 (COH0285-01) Soil S	ampled: 08/05/05 07:53	Received	: 08/08/0	5 08:40					
cis-1,3-Dichloropropene	ND	5 0	μg/kg	l	CO06021	08/10/05	08/10/05	EPA 8260B	
trans-1,3-Dichloropropene	ND	5.0	II.	1	p	n	I1	и	
Ethylbenzene	ND	5.0	11	U	Ħ	D	11	Ħ	
1,1,2-Tricholoro-1,2,2-trifluoroetha	ane (ND	50	n	'	Ħ	D	II	11	
Freon 113)							n	0	
Hexachlorobutadiene	ND	5 0	n 	. n	h	#		u u	
2-Hexanone	ND	50		и Н	11		H		
Isopropylbenzene	ND	5 0	n .			"	**	"	
p-Isopropyltoluene	ND	5.0	U	11			"	n D	
Methylene chloride	ND	5.0		u 	0	u	11 U		
4-Methyl-2-pentanone	ND .	50	D	u)))†	0	"		
Methyl tert-butyl ether	ND ·	5 0	It	II.		11			
Naphthalene	ND	5 0	H	D	Ħ	"	n 	- Pt	
n-Propylbenzene	ND	5 0	11	"	11	11	n	n u	
Styrene	ND	5 0	u	н	0	H	H		
1,1,2,2-Tetrachloroethane	ND	5.0	U	н	. "	#1	**		
1,1,1,2-Tetrachloroethane	ND	5.0		11	11			0	
Tetrachloroethene	ND	5.0	D	"	II.	Ø			
Toluene	ND	5 0	I†	u	11	U	II	U	
1,2,3-Trichlorobenzene	ND	5 0	H	Q.	I†	II	i)	n	
1,2,4-Trichlorobenzene	ND	5 0	**	"	I+	n	IJ	n	
1,1,2-Trichloroethane	ND	5 0	71	I)	IF	II	U	"	
1,1,1-Trichloroethane	ND	5 0	н	11	H	H	"	11	
Trichloroethene	ND	5 0	11	11	н	11	II	If	
Trichlorofluoromethane	ND	5 0	U	Ħ	Ħ	11	II.	I)	
1,2,3-Trichloropropane	ND	50	u	n	11	n	"	11	
1,3,5-Trimethylbenzene	ND	5 0	n	н	ш	11	"	H	
1,2,4-Trimethylbenzene	ND	5.0	1)	н	11	н	"	11	
Vinyl chloride	ND	10	D	н	U	14	19	μ	
Xylenes (total)	ND	10	D	11	U	n	Je	н	
Di-isopropyl ether	ND	5 0	11	a	Ш	n	If	11	
Ethyl tert-butyl ether	ND	5 0	17	u u	п	11	+1	π	
tert-Amyl methyl ether	ND	5 0	н	U	II.	11	11	(F	
Tert-butyl alcohol	ND	50	H	11	II .	11	#1	tt	

CALIFORNIA LABORATORY SERVICES

08/15/05 09:33

APEX Envirotech Inc - Gold River

Project: Calvary Christian Church CLS Work Order #: COH0285

11244 Pyrites Way Gold River, CA 95670

Project Number: CCH01 001 Project Manager: Rebekah Westrup

COC #: 53513

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-2B-30 (COH0285-01) Soil			: 08/08/0	5 08:40		•			
Surrogate 1,2-Dichloroethane-	<u> </u>	126 %		-125	CO06021	08/10/05	08/10/05	EPA 8260B	S-HI
Surrogate Toluene-d8		93.0 %		-125	"	n	11	"	•
Surrogate 4-Bromofluorobenze	ne	100 %		-128	u	"	#	n	
GP-2B-45 (COH0285-02) Soil	Sampled: 08/05/05 08:33	Received	: 08/08/0	5 08:40					
Acetone	ND	100	μg/kg	1	CO06021	08/10/05	08/10/05	EPA 8260B	
Benzene	ND	5.0	D	н	U	U	11	a	
Bromobenzene	ND	5 0	н	11	D	U	D	n n	
Bromochloromethane	ND	5 0	H	n	10	U	n	n n	
Bromodichloromethane	ND	5 0	н	0	I)	14	ıt	0	
Bromoform	ND	5 0	0	"	н	H	IT	n	
Bromomethane	ND	10	n .	IF	R	H	It	н	
2-Butanone	ND	100	U	11	н	11	ıt	II.	
n-Butylbenzene	ND	5.0	U	H	11	11	n	11	
sec-Butylbenzene	ND	5.0	. "	н	u u	fl	11	U	
tert-Butylbenzene	ND	5.0	D	M	11	11	*1	"	
Carbon tetrachloride	ND	5 0	11	н	II .	u	Ħ	If	
Chlorobenzene	ND	5 0	B	t	n	O O	11	H	
Chloroethane	ND	5 0	n	11	U	u	†I	п	
Chloroform	ND	5 0	n	11	U	U	u	IT.	
Chloromethane	ND	10	n	J	0	II	u	R	
o-Chlorotoluene	ND	5 0	#1		0	ш	0	P	
p-Chlorotoluene	ND	5 0	u	II .	D	U	0	R	
Dibromochloromethane	ND	5 0	u	U	Ħ	U	U	n	
1,2-Dibromo-3-chloropropane	ND	10	0	D	P	n	ш	Ħ	
1,2-Dibromoethane (EDB)	ND	5.0	0	P	n	n	II .	at .	
Dibromomethane	ND	5.0	0	P	п	11	U	rı .	
1,2-Dichlorobenzene	ND	5 0	n	н	11	И	n	a a	
1,3-Dichlorobenzene	ND	5 0	11	N	a	71	H	п	
1,4-Dichlorobenzene	ND	5 0	H	11	u	11	H	II.	
Dichlorodifluoromethane (Freon	12) ND	10	N	11	U	(1	11	U.	
1,1-Dichloroethane	ND	5 0	t.	Œ	U	u	11	n	
1,2-Dichloroethane	ND	5 0	и	11	U	II	11	19	
1,1-Dichloroethene	ND	5.0	u	U	n	II	O	n	
cis-1,2-Dichloroethene	ND	5.0	U	II.	II.	IJ	D	tt	

08/15/05 09:33

APEX Envirotech Inc. - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church

CLS Work Order #: COH0285

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53513

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-2B-45 (COH0285-02) Soil Sample	ed: 08/05/05 08:33	Received	l: 08/08/0	5 08:40				<u></u>	
trans-1,2-Dichloroethene	ND	5 0	μg/kg	1	CO06021	08/10/05	08/10/05	EPA 8260B	
1,2-Dichloropropane	ND	5 0	U	11	U	II.	tt	ч	
1,3-Dichloropropane	ND	5 0		11	IJ	н	71	Ħ .	
2,2-Dichloropropane	ND	5 0		11	П	II .	11	11	
1,1-Dichloropropene	ND	50	II.	11	U	II	**	R	
cis-1,3-Dichloropropene	ND	5.0		11	IJ	U	"	P.	
trans-1,3-Dichloropropene	ND	5 0		11	u	U	11	11	
Ethylbenzene	ND	5 0	U	11	ti .	U	11	11	
1,1,2-Iricholoro-1,2,2-trifluoroethane (ND	5.0	U	11	U	II .	11	11	
Freon 113)								U	
Hexachlorobutadiene	ND	5.0	U	1	U		"	"	
2-Hexanone	ND	50		и	U	"	n	"	
Isopropylbenzene	ND	5 0	IJ	1.	n	U	U		
p-Isopropyltoluene	ND	5.0	n	1.	a	u	II		
Methylene chloride	ND	5.0	U	41	u	II .	и .	ŋ	
4-Methyl-2-pentanone	ND	50	17	11	11	II	II	U	
Methyl tert-butyl ether	ND _.	5.0	11	11	11	a	"	II .	
Naphthalene	ND	5 0	ò	11	u	II	II	11	
n-Propylbenzene	ND	5.0	n	11	11	u	II	11	
Styrene	ND	5.0	D	11	0	II	II	II	
1,1,2,2-Tetrachloroethane	ND	5.0	17	41	U	IJ	"	U	
1,1,1,2-Tetrachloroethane	ND	5.0	17	11	U	u	"	ŋ	
T'etrachloroethene	ND	5.0	U	11	U	п	11	1)	
Toluene	ND	5.0	D.	11	u	II	ŋ	0	
1,2,3-Trichlorobenzene	ND	5.0	D.	11	ш	IJ	11	0	
1,2,4-Trichlorobenzene	ND	5.0	17	11	U	II .	11	ш	
1,1,2-Trichloroethane	ND	5.0	D	11	u	U	D	(I	
1,1,1-Trichloroethane	ND	5.0	п	11	0	u	11	u	
Trichloroethene	ND	5 0	п	н	11	u	U	ų.	
Trichlorofluoromethane	ND	5 0	0	н	н	11	u	11	
1,2,3-Trichloropropane	ND	5 0	u	н	н	**	u	11	
1,3,5-Trimethylbenzene	ND	5 0	u	Ħ	н	*	**	н	
1,2,4-Trimethylbenzene	ND	5 0	a	п	n	11	**	It.	
Vinyl chloride	ND	10	11	ц	n	Ħ	11	n	
Xylenes (total)	ND	10	и	"	H	II	Ħ	D	
,,								+	

08/15/05 09:33

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0285

Project Number: CCH01 001

COC #: 53513

Project Manager: Rebekah Westrup

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-2B-45 (COH0285-02) Soil	Sampled: 08/05/05 08:33	Received	: 08/08/05	5 08:40					
Di-isopropyl ether	ND	5.0	μg/kg	1	CO06021	08/10/05	08/10/05	EPA 8260B	
Ethyl tert-butyl ether	ND	5.0	ri.	D.	II.	п	н	a	
tert-Amyl methyl ether	ND	5 0	n	n	n	н	н	11	
Tert-butyl alcohol	ND	50			<u>u</u>	н	и	11	
Surrogate 1,2-Dichloroethane-d	4	125 %	.50	125	ıt	u	"	"	
Surrogate Toluene-d8		938%	62-	125	"	n	"	и	
Surrogate 4-Bromofluorobenzen	e	108 %	50-1	128	"	"	"	"	

CA DOHS ELAP Accreditation/Registration Number 1233

Fax: 916-638-4510

08/15/05 09:33

APEX Envirotech Inc. - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church

CLS Work Order #: COH0285

Project Number: CCH01 001

COC #: 53513

Project Manager: Rebekah Westrup

TPH-Gasoline by GC FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CO06051 - EPA 5030 Soil GC										
Blank (CO06051-BLK1)				Prepared:	08/10/05	Analyze	1: 08/11/05			
Gasoline	ND	10	mg/kg							
Surrogate o-Chlorotoluene (Gas)	0 0980	2 22 1500 -	п	0 100		98 0	6.5-1.35			
LCS (CO06051-BS1)				Prepared:	08/10/05	Analyzed	1: 08/11/05			
Gasoline	2 43	10	mg/kg	2 50		97 2	65-135			
Surrogate o-Chlorotoluene (Gas)	0 103		н	0 100		103	65-135			
LCS Dup (CO06051-BSD1)				Prepared:	08/10/05	Analyze	1: 08/11/05			
Gasoline	2 27	10	mg/kg	2 50		90 8	65-135	6 81	30	
Surrogate o-Chlorotoluene (Gas)	0 0923		"	0 100		92.3	65-135			
Matrix Spike (CO06051-MS1)	So	urce: COH02	289-01	Prepared:	08/10/05	Analyze	1: 08/11/05			
Gasoline	2 22	1 0	mg/kg	2 50	ND	888	63-124			
Surrogate o-Chlorotoluene (Gas)	0 0987		"	0 100		98 7	65-135			
Matrix Spike Dup (CO06051-MSD1)	So	urce: COH02	289-01	Prepared:	08/10/05	Analyze	1: 08/11/05		-6	
Gasoline	2 31	1 0	mg/kg	2 50	ND	92 4	63-124	3.97	35	
Surrogate o-Chlorotoluene (Gas)	0 100		"	0 100		100	65-135			

08/15/05 09:33

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0285

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53513

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CO06021 - EPA 5030 Soil MS										
Blank (CO06021-BLK1)				Prepared	& Analyze	ed: 08/10/0	05			
Acetone	ND	100	μg/kg							
Benzene	ND	5.0	н							
Bromobenzene	ND	5.0	н							
Bromochloromethane	ND	5 0	11							
Bromodichloromethane	ND	5.0	u							
Bromoform	ND	5 0	v							
Bromomethane	ND	10	U							
2-Butanone	ND	100	n .							
n-Butylbenzene	ND	5 0	u u							
sec-Butylbenzene	ND	5 0	D							
tert-Butylbenzene	ND	. 50	n							
Carbon tetrachloride	ND	5 0	п							
Chlorobenzene	ND	5 0	11							
Chloroethane	ND	5 0	u							
Chloroform	ND	5 0	п							
Chloromethane	ND	10	II.							
o-Chlorotoluene	ND	5 0	IJ							
p-Chlorotoluene	ND	5 0	0							
Dibromochloromethane	ND	5 0	11							
1,2-Dibromo-3-chloropropane	ND	10	11							
1,2-Dibromoethane (EDB)	NĎ	5.0	**							
Dibromomethane	ND	5 0	11							
1,2-Dichlorobenzene	ND	5.0	н							
1,3-Dichlorobenzene	ND	5.0	n							
1,4-Dichlorobenzene	ND	5 0	Ħ							
Dichlorodifluoromethane (Freon 12)	ND	10	н							
1,1-Dichloroethane	ND	5 0	н							
1,2-Dichloroethane	ND	5 0	н							
1,1-Dichloroethene	ND	5 0	п							
cis-1,2-Dichloroethene	ND	5 0	11							
trans-1 2-Dichloroethene	ND	5 0	u							

CALIFORNIA LABORATORY SERVICES

08/15/05 09:33

APEX Envirotech Inc - Gold River

Project: Calvary Christian Church CLS Work Order #: COH0285

11244 Pyrites Way

Project Number: CCH01 001

Volatile Organic Compounds by EPA Method 8260B - Quality Control

COC #: 53513

Gold River, CA 95670

Project Manager: Rebekah Westrup

					, -					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch CO06021 - EPA 5030 Soil MS					
Blank (CO06021-BLK1)				Prepared & Analyzed: 08/10/05	
1,2-Dichloropropane	ND	5 0	μg/kg		
1.3-Dichloropropane	ND	5 0	,		
2,2-Dichloropropane	ND	5 0	п		
1,1-Dichloropropene	ND	5 0	н		
cis-1,3-Dichloropropene	ИD	5 0	11		
trans-1 3-Dichloropropene	ND	5 0	u		
Ethylbenzene	ND	5.0	u		
1,1,2-Tricholoro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	U		
Hexachlorobutadiene	ND	5 0	n		
2-Hexanone	ND	50	0		
Isopropylbenzene	ND	5 0	II .		
p-Isopropyltoluene	ND -	5 0	U		
Methylene chloride	ND	5 0	U		
1-Methyl-2-pentanone	ND	50	0		
Methyl tert-butyl ether	ND	5 0	U		
Naphthalene	ND	5 0	0 '		
n-Propylbenzene	ND	5 0	11		
Styrene	ND	5 0	n		
1 1 2 2-Tetrachloroethane	ND	5 0	D		
1 1 1 2-Tetrachloroethane	ND	5 0	n		
Ietrachloroethene	ND	5 0	H	•	
Ioluene	ND	5 0	н		
1,2,3-Irichlorobenzene	ND	5 0	n		
1,2,4-Trichlorobenzene	ND	5 0	н		
1,1,2-Trichloroethane	ND .	5 0	п		
1,1,1-Irichloroethane	ND	5 0	н		
Trichloroethene	ND	5 0	N.		
Irichlorofluoromethane	ND	5 0	н		
1,2 3-Trichloropropane	ND	5 0	н		
1,3,5-Trimethylbenzene	ND	5 0	и		

08/15/05 09:33

APEX Envirotech Inc. - Gold River

11244 Pyrites Way Gold River, CA 95670

Project: Calvary Christian Church CLS Work Order #: COH0285

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53513

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CO06021 - EPA 5030 Soil MS	· · · · · · · · · · · · · · · · · · ·			·						
Blank (CO06021-BLK1)				Prepared	& Analyz	ed: 08/10/0)5			
1,2,4-Trimethylbenzene	ND	5 0	μg/kg							
Vinyl chloride	ND	10	H							
Xylenes (total)	ND	10	11							
Di-isopropyl ether	ND	50	н							
Ethyl tert-butyl ether	ND	5.0	Pf							
tert-Amyl methyl ether	ND	5.0	n							
Tert-butyl alcohol	ND	50	Ħ							
Surrogate. 1 2-Dichloroethane-d4	59 4		п	500		119	50-125			
Surrogate Toluene-d8	452		"	50 O		904	62-125			
Surrogate 4-Bromofluorobenzene	53 O		n	50 0		106	50-128			
LCS (CO06021-BS1)				Prepared	& Analyz	ed: 08/10/0)5			
Benzene	40 8	5 0	μg/kg	50 0		816	64-135			
Chlorobenzene	55 0	5 0	H	50 0		110	67-133			
1,1-Dichloroethene	38 2	5 0	PT	50 0		76 4	53-137			
Toluene	42 2	5.0	15	50 0		84 4	61-138			
Trichloroethene	42 1	5.0	It	50 0		84 2	64-130			
Surrogate 1.2-Dichloroethane-d4	530		"	50 0		106	50-125			
Surrogate Toluene-d8	47 4		n	50 0		948	62-125			
Surrogate 4-Bromofluorobenzene	49.3		"	50 0		98 6	.50-128			
LCS Dup (CO06021-BSD1)				Prepared	& Analyz	ed: 08/10/0)5			
Benzene	37 7	5.0	μg/kg	50 0		75 4	64-135	7 90	30	
Chlorobenzene	58 5	5.0	It	50 0		117	67-133	6 17	30	
1,1-Dichloroethene	313	5.0	IŤ	50 0		62 6	53-137	199	30	
Toluene	418	5 0	U	50 0		83.6	61-138	0.952	30	
Trichloroethene	39 9	5 0	n	50 0		79.8	64-130	5 37	30	
Surrogate 1 2-Dichloroethane-d4	510		"	50 0		102	50-125			
Surrogate Toluene-d8	458		"	.50 0		916	62-125			
Surrogate 4-Bromofluorobenzene	55 2		"	50 0		110	<i>50-128</i>			

08/15/05 09:33

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0285

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53513

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CO06021 - EPA 5030 Soil MS									 .	
Matrix Spike (CO06021-MS1)	Source: COH0391-02 P			Prepared	& Analyz	ed: 08/10/				
Benzene	35 9	5 0	μg/kg	50 0	ND	718	58-139			
Chlorobenzene	46 2	5 0	•	50 0	ND	92 4	62-134			
1,1-Dichloroethene	36 6	5 0	U	50 0	ND	73 2	53-152			
Toluene	36 9	5 0	U	50 0	ND	73 8	58-139			
Trichloroethene	38.4	5 0	п	50 0	ND	76 8	55-138			
Surrogate 1 2-Dichloroethane-d4	6.2 2		н	50 0		124	50-125			
Surrogate Toluene-d8	46 5		н	50 O		93 0	62-125			
Surrogate. 4-Bromofluorobenzene	57 3		"	50 O	·	11.5	50-128			
Matrix Spike Dup (CO06021-MSD1)	Sour	ce: COH03	391-02	Prepared	& Analyz	ed: 08/10/	05			
Benzene	34 7	5 0	μg/kg	50 0	ND	69 4	58-139	3 40	30	
Chlorobenzene	42 1	5 0	н	50 0	ND	84 2	62-134	9 29	30	
1,1-Dichloroethene	38 2	5.0	м	50 0	ND	76 4	53-152	4 28	30	
Ioluene	35 5	5.0	н	50 0	ND	71 0	58-139	3 87	30	
Irichloroethene	36 9	5.0	н	50 0	ND	73 8	55-138	3 98	30	
Surrogate 1 2-Dichloroethane-d4	66 6		n	50 0		133	50-125			S-G
Surrogate Toluene-d8	50 4		n	50 O		101	62-125			
Surrogate 4-Bromofluorobenzene	57 6		n	50 0		115	50-128			

08/15/05 09:33

APEX Envirotech Inc - Gold River

Project: Calvary Christian Church

CLS Work Order #: COH0285

11244 Pyrites Way

Project Number: CCH01 001 Project Manager: Rebekah Westrup

COC #: 53513

Gold River, CA 95670

Notes and Definitions

S-HI Surrogate recovery was greater than the upper control limit A reanalysis was not performed since the analytes associated with the surrogate were not detected.

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogates.

DET Analyte DETECTED

ND Analyte NOI DETECTED at or above the reporting limit

NR

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

9 | SPECIAL INSTRUCTIONS が 位 36 30 LOG NO. 53513 C18-28-45 # 2 PRINT NAME / COMPANY 政府 CONTRAC A.L. Q*5 *N = 18. INVOICE TO QUOTE # F. 6 GEOTHACKER THOUSE HOUSE OV AVQ TURN AROUND TIME GLOBAL ID: CONTRIONS CONTRIVENTS FIELD CONDITIONS: λγα ė CLS ID No., COLPOSE AIR BILL # 0.00 H COMPOSITE t DAY 2 YAG S BY (SIGN ANALYSIS REQUESTED PRESERVATIVES: の扱う MTE | TIME OTHER PRESERVATIVES X CLS (916) 638-7301 3249 FIZGERALD RU PANCHÓ CORBOWA, CA. 99742 CHAIN OF CUSTODY N. C. CONTAINER NO. TYPE DATE TIME BIGIOT DESTINATION LABORATORY CLIENT JOB NUMBER CCH 01.60 PRINT NAME / COMPANY OTHER MATRIX A 30°, 1 UPS KALL RIKES Calvery Chroken Church SAMPLE IDENTIFICATION NAME AND ADDRESS APRX ENVIRORES 8505 0753 OP-28 -20 3x-500 12831 100-315-45 11244 Py 1755 WEN REPORT TO: FEDX Gold Pierc CA Repertualism Westerp PROJECT WARE Cresposite RELINQUISHED BY (SIGN) SUSPECTED CONSTITUTIONS DATE TIME SHIPPED 8Y: JOB DESCRIPTION SITE LOCATION SAMPLED BY RECO

84.1

CALIFORNIA LABORATORY SERVICES

3249 Fitzgerald Road Rancho Cordova, CA 95742

August 30, 2005

CLS Work Order #: COH0777 COC #: 53600

Rebekah Westrup APEX Envirotech Inc - Gold River 11244 Pyrites Way Gold River, CA 95670

Project Name: Calvary Christian Church

Enclosed are the results of analyses for samples received by the laboratory on 08/23/05 08:40. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely

James Liang, Ph D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

08/30/05 11:32

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church

Project Number: CCH01 001

Project Manager: Rebekah Westrup

CLS Work Order #: COH0777

COC #: 53600

TPH-Gasoline by GC FID

Analyte	R Result	Leporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-2C-33.5 (COH0777-01) Soil	Sampled: 08/22/05 13:09	Receiv	ed: 08/23/05	08:40					
Gasoline	ND	1.0	mg/kg	1	CO06433	08/24/05	08/24/05	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		91 2 %	65-13	5	"	u	"	"	
GP-2C-35.5 (COH0777-02) Soil	Sampled: 08/22/05 13:29	Receive	ed: 08/23/05	08:40					
Gasoline	ND	1.0	mg/kg	1	CO06527	08/25/05	08/25/05	EPA 8015M	
Surrogate o-Chlorotoluene (Gas)		976%	65-13.	5	"	" .	,,	"	

CA DOHS ELAP Accreditation/Registration Number 1233

08/30/05 11:32

APEX Envirotech Inc. - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0777

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53600

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-2C-33.5 (COH0777-01) Soil	Sampled: 08/22/05 13:09	Receiv	ed: 08/23	/05 08:40					
Acetone	ND	100	μg/kg	1	CO06353	08/23/05	08/23/05	EPA 8260B	
Benzene	ND	5 0	†1	п	D	. n	II	II ·	
Bromobenzene	ND	5 0	11	D	D	11	n	ii .	
Bromochloromethane	ND	5 0	Ш	D	17	17	н	v	
Bromodichloromethane	ND	5 0	n	H	11	17	11	*	
Bromoform	ND	5 0	11	tr	н	Ħ	n n	TP	
Bromomethane	ND	10	U	11	u	(1	11	n	
2-Butanone	ND	100	11	II	II .	Œ	11	u	
n-Butylbenzene	ND	5.0	10	II .		II .	11	n n	
sec-Butylbenzene	ND	5 0	11	II .	U	U	11	n n	
tert-Butylbenzene	ND	5 0	tt.	IJ	D	"	"	n n	
Carbon tetrachloride	ND	5 0	п	11	It	0	11	II .	
Chlorobenzene	ND	5.0	11		11	If	n	U	
Chloroethane	ND	5.0	n	Ħ	11	11	11	11	
Chloroform	ND	5.0	rr ·	(1	ıı .	11	u	n	
Chloromethane	ND	10	**	u	0	u	u	PT	
o-Chlorotoluene	ND	5 0	Œ	п	U	n	п	#1	
p-Chlorotoluene	ND	5 0	U	n	0	н	U	a	
Dibromochloromethane	ND	5 0	п	0	11	ш	U	a a	
1,2-Dibromo-3-chloropropane	ND	10	U	11	**	U	n	II .	
1,2-Dibromoethane (EDB)	ND	5 0	11	**	11	"	n	U	
Dibromomethane	ND	5.0	14	11	**	"	**	n .	
1.2-Dichlorobenzene	ND	50	78	ш	11	n	PT	n	
1,3-Dichlorobenzene	ND	5 0	11	п	u	Ħ	11	0	
1,4-Dichlorobenzene	ND	50	1	n	п	11	11	n	
Dichlorodifluoromethane (Freon 12	2) ND	10	0	n	п	ш	a	"	
1.1-Dichloroethane	ND	5 0	U	n	U	п	a	rr	
1,2-Dichloroethane	ND	5 0	ш	11	11	ii .	u	16	
1,1-Dichloroethene	ND	5.0	ш	n	n	II	U	tt	A-01
cis-1,2-Dichloroethene	ND	5.0	n	17	**	11	п	u	
trans-1,2-Dichloroethene	ND	5.0	11	Ħ	H	11	0	11	
1,2-Dichloropropane	ND	5.0	17	ч	а	"	0	n .	
1,3-Dichloropropane	ND	5.0	n	11	fl fl	н	11	n .	
2,2-Dichloropropane	ND	5 0	a	u	a	**	н	n .	
1,1-Dichloropropene	ND	50	0	п	п	**	11	п	

08/30/05 11:32

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0777

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53600

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-2C-33.5 (COH0777-01) Soil S	ampled: 08/22/05 13:09	Receiv	ed: 08/23	/05 08:40					
cis-1,3-Dichloropropene	ND	5 0	μg/kg	1	CO06353	08/23/05	08/23/05	EPA 8260B	
trans-1,3-Dichloropropene	ND	5.0	II .	11	и	II .	n	II .	
Ethylbenzene	ND	50	U	Ħ	II .	II.	11	n	
1,1,2-Tricholoro-1,2,2-trifluoroethane	(ND	5 0	K	"	0	. n	**	n	
Freon 113)									
Hexachlorobutadiene	ND	50	(1	II .	"	"	"	,,	
2-Hexanone	ND	50	0	B	1)	н	II.	**	
Isopropylbenzene	ND	5.0	0	H	11	**	п	18	
p-Isopropyltoluene	ND	5.0	U	n	11	1f	n	11	
Methylene chloride	ND	5.0	IP	11	II .	II .	n	II	
4-Methyl-2-pentanone	ND	50	н	II	11	II .	17	n	
Methyl tert-butyl ether	ND	5.0	11	II	11	11	17	n	
Naphthalene	ND	5.0	U	n	D	п	11	n	
n-Propylbenzene	ND	5.0	Ð	p	n	11	n	. 0	
Styrene	ND	5 0	11	n	Ħ	10	п	T+	
1,1,2,2-Tetrachloroethane	ND	5 0	IT	11	(1	ıı .	п	ti .	
1,1,1,2-Tetrachloroethane	ND	5 0	**	u	ш	п	n	u	
Tetrachloroethene	ND	5 0	11	п	н	11	"	II	
Toluene	ND	50	u	II.	п	n	**	U	
1,2,3-Trichlorobenzene	ND	5.0	a	D	n	n	Ħ	D	
1,2,4-Trichlorobenzene	ND	5.0	II .	n	**	"	11	n.	
1,1,2-Trichloroethane	ND	5 0	11	**	**	**	u	17	
1,1,1-Trichloroethane	ND	5 0	11	17	11	u	II .	**	
Trichloroethene	ND	5 0	P	u	II	II	п	11	
Trichlorofluoromethane	ND	5 0	n	II	n	II	II .	41	
1,2,3-Trichloropropane	ND	5 0	11	II	U	11	D	Ü	
1,3,5-Trimethylbenzene	ND	5.0	n n	n	II	II .	0	II	
1,2,4-Trimethylbenzene	ND	5.0		0	n	п	17	u	
Vinyl chloride	ND	10	D.	n	n	II	n	íi .	
Xylenes (total)	ND	10	D	n	n	n	19	n	
Di-isopropyl ether	ND	5 0	D	Ħ	14	**	11	0	
Ethyl tert-butyl ether	ND	5 0	14	11	10	**	u	n	
tert-Amyl methyl ether	ND	5 0	н	**	o o	**	и	n	
Tert-butyl alcohol	ND	50	#1	u	и	n	п	11	

08/30/05 11:32

APEX Envirotech Inc. - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0777

Project Number: CCH01.001 Project Manager: Rebekah Westrup

COC #: 53600

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-2C-33.5 (COH0777-01) Soil					Daven	Tropulou			
	Sampled: 06/22/03 13:07	108 %		125	CO06353	08/23/05	08/23/05	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8		760%		125	# #	UQ/2.3/U.3 II	00/2.3/03	# # # # # # # # # # # # # # # # # # #	
Surrogate: 4-Bromofluorobenzene		125 %		128	u	,,	II.	n	
GP-2C-35.5 (COH0777-02) Soil	Sampled: 08/22/05 13:29	Receive	ed: 08/23	/05 08:40					
Acetone	ND	100	μg/kg	1	CO06353	08/23/05	08/23/05	EPA 8260B	
Benzene	ND	5.0	0	n	n	1)	п	n	
Bromobenzene	ND	5.0	п	n	#1	U	n n	II.	
Bromochloromethane	ND	5.0	0	n,	11	1)	п	ŋ	
Bromodichloromethane	ND	5 0	11	"	"	1)	II .	D	
Bromoform	ND	5 0	n	**	u	11	II .	ı,	
Bromomethane	ND	10	U	#	п	l t	II.	n	
2-Butanone	ND	100	n	Tt.	0	**	n	II.	
n-Butylbenzene	ND	5 0	**	11	0	**	n	11	
sec-Butylbenzene	ND	50	**	Œ	п	fl	II .	H*	
tert-Butylbenzene	ND	50	11	n	п	u u	n	*	
Carbon tetrachloride	ND	5.0	11	U	D	u	n	•	
Chlorobenzene	ND	5.0	u	II .	II.	íl .	"	**	
Chloroethane	ND	5.0	a a	U	0	u	u.	Ħ	
Chloroform	ND	5.0	n n	U	1.0	u	11	Ħ	
Chloromethane	ND	10	n	II .	n	II .	19	**	
o-Chlorotoluene	ND	5.0	n	II .	n	II .	11	n	
p-Chlorotoluene	ND	50	п	n	n	n	**	n	
Dibromochloromethane	ND	5 0	п	n	If	n	n	**	
1,2-Dibromo-3-chloropropane	ND	10	n .	U	n	п	n	19	
1,2-Dibromoethane (EDB)	ND	5.0	0	U	**	u	11	**	
Dibromomethane	ND	5 0	n	"	H	u	"	**	
1,2-Dichlorobenzene	ND	5 0	n.	n	м	п	**	n	
1,3-Dichlorobenzene	ND	5 0	11	n	H	II	11	rr	
1,4-Dichlorobenzene	ND	5 0	n	It	н	II	H	n	
Dichlorodifluoromethane (Freon 12	ND	10	11	11	*	IJ	н	11	
1,1-Dichloroethane	ND	5 0	17	P	11	"	tt	18	
1,2-Dichloroethane	ND	5 0	H	n	a a	"	n	11	
1,1-Dichloroethene	ND	5 0	n	11	11	n	ii.	11	A-01
cis-1,2-Dichloroethene	ND	5 0	rr	11	u	n	n	II	

08/30/05 11:32

APEX Envirotech Inc - Gold River

11244 Pyrites Way

Gold River, CA 95670

Project: Calvary Christian Church CLS Work Order #: COH0777

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC#: 53600

Trans-1,2-Dichloroethene	Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
1,2-Dichloropropane	GP-2C-35.5 (COH0777-02) Soil S	Sampled: 08/22/05 13:29	Receiv	ed: 08/23	/05 08:40					
1,2-Dichloropropane	trans-1,2-Dichloroethene	ND		μg/kg		CO06353				
1,3-Dichloropropane	1,2-Dichloropropane	ND	5 0	**	P	P	а	IT		
1,1-Dichloropropene	1,3-Dichloropropane	ND	5 0	н	H	Ħ	а	п	11	
State Stat	2,2-Dichloropropane	ND	5 0	"	11	11	u	11	11	
Ethylbenzene	1,1-Dichloropropene	ND	50	11	tt	a	u	et e	11	
trans-1,3-Dichloropropene ND 5 0	cis-1,3-Dichloropropene	ND	5.0	n	,11	ч	a	11	11	
The properties of the proper	trans-1,3-Dichloropropene	ND	5.0	ш	11	11	q	11	H	
	Ethylbenzene	ND	5.0	U	11	ш	0	11	14	
Hexachlorobutadiene	1,1,2-Tricholoro-1,2,2-trifluoroethan	ie (ND	5 0	II .	0	II .	II .	a	71	
Paramone										
Sopropylbenzene	Hexachlorobutadiene	ND	5 0	U	u	n	U	(I	Ħ	
SopropyleDenzene ND 5 0 1	2-Hexanone	ND	50	19	11	n	U	n	н	
No	Isopropylbenzene	ND	5 0	*	II	IJ	n	ш	ti .	
A-Methyl-2-pentanone ND 50 " " " " " " " " " " " " " " " " " "	p-Isopropyltoluene	ND	5 0	#	D	11	D	ш	u	
4-Methyl tert-butyl ether ND 50 "<	Methylene chloride	ND	5 0	11	11	Ħ	"	n	п	
Naphthalene	4-Methyl-2-pentanone	ND	50	u	n	**	R	o	п	
Naphthalene ND 5 0 """"""""""""""""""""""""""""""""""""	Methyl tert-butyl ether	ND	5.0	n n	*	н	**	n	II	
n-Propylbenzene ND 5 0 """"""""""""""""""""""""""""""""""""		ND	5.0	O O	Ħ	Ħ	н	U	п	
Styrene ND 5 0 """"""""""""""""""""""""""""""""""""		ND	5.0	0	11	11	н	n	п	
1,1,2,2-1 etrachloroethane ND 5 0 " <t< td=""><td>= -</td><td>ND</td><td>5 0</td><td>11</td><td>11</td><td>11</td><td>#1</td><td>н</td><td>ŋ</td><td></td></t<>	= -	ND	5 0	11	11	11	#1	н	ŋ	
1,1,1,2-Tetrachloroethane ND 5 0 "	1,1,2,2-Tetrachloroethane	ND	5 0	11	ı	11	11	1F	n	
Tetrachloroethene ND 5 0 "		ND	5 0	n	U	n	u	н	11	
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene ND 50 """""""""""""""""""""""""""""""""""		ND	5 0	19	п	IJ	n	Я	n	
1,2,4-Trichlorobenzene ND 5 0 "<	Toluene	ND	5 0	11	II	0	U	11	P	
1,2,4-Trichlorobenzene ND 5 0 "<	1,2,3-Trichlorobenzene	ND	5 0	11	п	0	II	11	P	
1,1,2-Trichloroethane ND 5 0 " </td <td></td> <td>ND</td> <td>5 0</td> <td>Ħ</td> <td>n</td> <td>U</td> <td>n</td> <td>ű</td> <td>H</td> <td></td>		ND	5 0	Ħ	n	U	n	ű	H	
1,1,1-Trichloroethane ND 5 0 " </td <td></td> <td>ND</td> <td>5 0</td> <td>**</td> <td>11</td> <td>n</td> <td>11</td> <td>-11</td> <td>н</td> <td></td>		ND	5 0	**	11	n	11	-11	н	
Trichloroethene ND 5.0 "		ND	5 0	n	11	D	"	n	rr .	
Trichlorofluoromethane ND 5.0 " <td></td> <td>ND</td> <td>5.0</td> <td>11</td> <td>11</td> <td>H</td> <td>D</td> <td>a a</td> <td>н</td> <td></td>		ND	5.0	11	11	H	D	a a	н	
1,2,3-Trichloropropane ND 5.0 "<				11	H	0	11	u	Ħ	
1,3,5-Trimethylbenzene ND 5.0 "<			5.0	11	n	117	II.	u	n	
1,2,4-Trimethylbenzene ND 5.0 " " " " " " " " " " " " " " " " " " "		- · -		II .	11	11	P	II.	11	
Vinyl chloride ND 10 " " " " " "	· ·			n n	n.	н	11	u	н	
•				n.	H	n	n	u	н	
Xylenes (total) NI) I(I " " " " " " " "	Xylenes (total)	ND	10	II.	н	11	11	11	н	

08/30/05 11:32

APEX Envirotech Inc. - Gold River

Project: Calvary Christian Church CLS Work Order #: COH0777

11244 Pyrites Way

Project Number: CCH01 001

COC#: 53600

Gold River, CA 95670

Project Manager: Rebekah Westrup

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-2C-35.5 (COH0777-02) Soil	Sampled: 08/22/05 13:29	Receive	ed: 08/23/	05 08:40					
Di-isopropyl ether	ND	50	μg/kg	1	CO06353	08/23/05	08/23/05	EPA 8260B	
Ethyl tert-butyl ether	ND	5 0	u	ŋ	11	U	11	h	
tert-Amyl methyl ether	ND	5.0	п	II .	n	D	-11	Ħ	
Tert-butyl alcohol	ND	50			H	D			
Surrogate 1,2 - Dichloroethane-d4		110 %	50-1	25.	n	n	н	"	
Surrogate Toluene-d8		76.6 %	62-1	25	n	a	н	H	
Surrogate 4-Bromofluorobenzene		122 %	.50-1	28	"	n	n	"	

08/30/05 11:32

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0777

COC #: 53600

Project Number: CCH01 001

Project Manager: Rebekah Westrup

IPH-Gasoline by GC FID - Quality Control

		Reporting		Spike	Source		%REC	÷	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CO06433 - EPA 5030 Soil GC				·····						
Blank (CO06433-BLK1)				Prepared	& Analyze	ed: 08/24/	05			
JP-4	ND	1.0.	mg/kg							
Gasoline	ND	10	**							
Surrogate o-Chlorotoluene (Gas)	0 0935		п	0 100		93 5	65-135			
LCS (CO06433-BS1)				Prepared	& Analyze	ed: 08/24/	05			
Gasoline	2 31	10	mg/kg	2 50		92.4	65-135			
Surrogate o-Chlorotoluene (Gas)	0 097.5		н	0 100		97 5	65-135			
LCS Dup (CO06433-BSD1)				Prepared	& Analyze	ed: 08/24/	05			
Gasoline	2.62	10	mg/kg	2 50		105	65-135	12 6	30	
Surrogate o-Chlorotoluene (Gas)	0 0963		. "	0 100	-	96 3	65-135			
Matrix Spike (CO06433-MS1)	So	urce: COH0	325-01	Prepared	& Analyze	ed: 08/24/	05			
Gasoline	1 66	10	mg/kg	2 50	ND	66 4	63-124			
Surrogate o-Chlorotoluene (Gas)	0 0623		"	0 100		62 3	65-135			S-04
Matrix Spike Dup (CO06433-MSD1)	So	urce: COH0	825-01	Prepared	& Analyze	ed: 08/24/	05			
Gasoline	2 52	1 0	mg/kg	2 50	ND	101	63-124	41 1	35	QR-02
Surrogate o-Chlorotoluene (Gas)	0 0991		"	0 100		99 I	65-135			
Batch CO06527 - EPA 5030 Soil GC									, . 	
Blank (CO06527-BLK1)				Prepared:	08/25/05	Analyzed	1: 08/30/05	ev		
Gasoline	ND	1.0	mg/kg				400			
Surrogate: o-Chlorotoluene (Gas)	0 0960		n	0 100		96 0	65-135			
LCS (CO06527-BS1)				Prepared:	08/25/05	Analyzec	1: 08/30/05	***		
Gasoline	2.44	10	mg/kg	2.50		97 6	65-135			
Surrogate o-Chlorotoluene (Gas)	0 0966		н	0 100		96 6	65-135			

08/30/05 11:32

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0777

Project Number: CCH01 001

COC #: 53600

Project Manager: Rebekah Westrup

TPH-Gasoline by GC FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CO06527 - EPA 5030 Soil GC										
LCS Dup (CO06527-BSD1)				Prepared:	08/25/05	Analyzed	1: 08/30/05			
Gasoline	2 53	1.0	mg/kg	2.50		101	65-135	3 62	30	
Surrogate: o-Chlorotolyene (Gas)	0.0972		"	0.100		97.2	65-135			

08/30/05 11:32

APEX Envirotech Inc. - Gold River

Project: Calvary Christian Church CLS Work Order #: COH0777

11244 Pyrites Way Gold River, CA 95670

Project Number: CCH01 001 Project Manager: Rebekah Westrup

COC #: 53600

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CO06353 - EPA 5030 Soil MS	S									
Blank (CO06353-BLK1)				Prepared	& Analyz	ed: 08/23/0)5		4007	
Acetone	ND	100	μg/kg							
Benzene	ND	5 0	n							
Bromobenzene	ND	5 0	a a							
Bromochloromethane	ND	5 0	u							
Bromodichloromethane	ND	5 0	II							
Bromoform	ND	5 0	II .							
Bromomethane	ND	10	1)							
2-Butanone	ND	100	11							
n-Butylbenzene	ND	5 0	n							
sec-Butylbenzene	ND	5.0	17							
tert-Butylbenzene	ND	5 0	R							
Carbon tetrachloride	ND	5 0	Ħ							
Chlorobenzene	ND	5 0	Ħ							
Chloroethane	ND	5 0	11							
Chloroform	ND	5 0	u							
Chloromethane	ND	10	н							
o-Chlorotoluene	ND	5 0								
p-Chlorotoluene	ND	5 0								
Dibromochloromethane	ND	5 0	п							
1,2-Dibromo-3-chloropropane	ND	10	II .							
1,2-Dibromoethane (EDB)	ND	5 0	II .							
Dibromomethane	ND	5 0	n							
1,2-Dichlorobenzene	ND	5.0	n							
1,3-Dichlorobenzene	ND	5.0	11							
1,4-Dichlorobenzene	ND	5.0	11							
Dichlorodifluoromethane (Freon 12)	ND	10	11							
1,1-Dichloroethane	ND	5 0	н							
1,2-Dichloroethane	ND	5 0	n							
1,1-Dichloroethene	ND	5 0	R							
cis-1 2-Dichloroethene	ND	5 0	н							
rans-1,2-Dichloroethene	ND	5 0	r e							

CA DOHS ELAP Accreditation/Registration Number 1233

Fax: 916-638-4510

08/30/05 11:32

APEX Envirotech Inc - Gold River

Project: Calvary Christian Church

CLS Work Order #: COH0777

11244 Pyrites Way Gold River, CA 95670 Project Number: CCH01 001

COC #: 53600

Project Manager: Rebekah Westrup

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CO06353 - EPA 5030 Soil M	S		. <u></u>							
Blank (CO06353-BLK1)				Prepared	& Analyze	ed: 08/23/0	05			
1,2-Dichloropropane	ND	5 0	μg/kg							
1,3-Dichloropropane	ND	5 0	U							
2,2-Dichloropropane	ND	5 0	II							
1,1-Dichloropropene	ND	5 0	II							
cis-1,3-Dichloropropene	ND	5 0	11			•				
trans-1,3-Dichloropropene	ND	5 0	0							
Ethylbenzene	ND	5 0	II							
1,1,2-Tricholoro-1,2,2-trifluoroethane (Freon 113)	ND	5 0	II							
Hexachlorobutadiene	ND	5 0	n							
2-Hexanone	ND	50	0							
Isopropylbenzene	ND	5 0	II .							
p-Isopropyltoluene	ND	5 0	II .							
Methylene chloride	ND	5 0	U							
4-Methyl-2-pentanone	ND	50	n							
Methyl tert-butyl ether	ND	5 0	· ·							
Naphthalene	ND	5 0	n							
n-Propylbenzene	ND	5 0	n							
Styrene	ND	5 0	u							
1,1,2,2-Tetrachloroethane	ND	5 0	U							
1,1,1,2-Tetrachloroethane	ND	5 0	U							
Tetrachloroethene	ND	5 0	II							
Toluene	ND	5 0	"							
1 2.3-Trichlorobenzene	ND	5 0	u							
I 2.4-Trichlorobenzene	ND	5 0	u							
1,1,2-Trichloroethane	ND	5 0	a.							
1,1,1-Trichloroethane	ND	5 0	"							
Trichloroethene	ND	5.0	u							
Trichlorofluoromethane	ND	5.0	11							
1,2,3-Irichloropropane	ND	5.0	***							
1,3 5-Trimethylbenzene	ND	5 0	**							

08/30/05 11:32

APEX Envirotech Inc - Gold River

11244 Pyrites Way

Gold River, CA 95670

Project Number: CCH01 001

Project Manager: Rebekah Westrup

Project: Calvary Christian Church CLS Work Order #: COH0777

COC #: 53600

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CO06353 - EPA 5030 Soil MS							/	-		
Blank (CO06353-BLK1)				Prepared	& Analyze	ed: 08/23/0	05			
1,2,4-Trimethylbenzene	ND	5 0	μg/kg			_	_			
Vinyl chloride	ND	10	"							
Xylenes (total)	ND	10	**	÷						
Di-isopropyl ether	ND	5 0	**							
Ethyl tert-butyl ether	ND	5 0	**							
tert-Amyl methyl ether	ND	5 0	o							
Tert-butyl alcohol	ND	50	u							
Surrogate 1 2-Dichloroethane-d4	50.2		"	50 0		100	50-125		-	
Surrogate. Toluene-d8	38 6		"	50 0		77.2	62-125			
Surrogate. 4-Bromofluorobenzene	61 0		"	50 0		122	50-128			
LCS (CO06353-BS1)				Prepared o	& Analyze	d: 08/23/0)5			
Benzene	50 6	5 0	μg/kg	50 0		101	64-135			
Chlorobenzene	47.9	5 0	11	50 0		95 8	67-133			
1,1-Dichloroethene	60 8	5 0	11	50 0		122	53-137			
Toluene	44 6	5 0	11	50 0		89 2	61-138	a.		
Trichloroethene	45 8	5 0	11	50 0		916	64-130			
Surrogate. 1 2-Dichloroethane-d4	47 9		"	50 0		958	50-125			
Surrogate: Toluene-d8	39 4		"	50 O		78 8	62-125			
Surrogate: 4-Bromofluorobenzene	51 0		n	50 0		102	50-128			
LCS Dup (CO06353-BSD1)				Prepared &	& Analyze	d: 08/23/0)5			
Benzene	48 8	5.0	μg/kg	50 0		97 6	64-135	3 62	30	
Chlorobenzene	49 7	5.0	**	50 0		99 4	67-133	3 69	30	
1,1-Dichloroethene	62 6	5 0	11	50 0		125	53-137	2 92	30	
Ioluene	42 8	5 0	11	50 0		85 6	61-138	4 12	30	
Trichloroethene	42 7	5 0	17	50 0		85 4	64-130	7 01	30	
Surrogate 1 2-Dichloroethane-d4	48 1		и	50 0		96 2	50-125			
Surrogate Toluene-d8	38 I		"	50 0		76 2	62-125			
Surrogate: 4-Bromofluorobenzene	588		"	50 0		118	50-128			

08/30/05 11:32

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0777

Project Number: CCH01 001

COC#: 53600

Project Manager: Rebekah Westrup

		Reporting		Spike	Source		%REC	B B B	RPD	37.4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CO06353 - EPA 5030 Soil MS										
Matrix Spike (CO06353-MS1)	Sour	ce: COH0	777-01	Prepared	& Analyze	ed: 08/23/	05			
Вепzепе	46 1	5 0	μg/kg	50 0	ND	92 2	58-139			
Chlorobenzene	45 4	5 0	11	50 0	ND	90 8	62-134			
1.1-Dichloroethene	60 3	5 0	u	50 0	ND	121	53-152			
Toluene	40 2	5 0	u	50 0	ND	80 4	58-139			
Irichloroethene	38 9	5 0		50 0	ND	77 8	55-138			
Surrogate 1.2-Dichloroethane-d4	52 8		н	50 0		106	50-125			
Surrogate Toluene-d8	388		н	50 0		77 6	62-125			
Surrogate 4-Bromofluorobenzene	60 6		н	500		121	50-128			
Matrix Spike Dup (CO06353-MSD1)	Sour	ce: COH0	777-01	Prepared	& Analyze	ed: 08/23/	05			
Benzene	47.8	5.0	μg/kg	50 0	ND	95 6	58-139	3.62	30	
Chlorobenzene	47.5	5 0	ш	50 0	ND	95 0	62-134	4.52	30	
1.1-Dichloroethene	67 2	5 0	U	50 0	ND	134	53-152	108	30	
Toluene	42 2	5 0	0	50 0	ND	84 4	58-139	4.85	30	
Trichloroethene	42 0	5 0	n	50 0	ND	84 0	55-138	7.66	30	
Surrogate: 1 2-Dichloroethane-d4	54 9		**	50 0		110	50-125			
Surrogate: Toluene-d8	38.3		"	50 O		76 6	62-125			
Surrogate: 4-Bromofluorobenzene	5 <i>9 9</i>		o	500		120	50-128			

08/30/05 11:32

APEX Envirotech Inc - Gold River

11244 Pyrites Way

Gold River, CA 95670

Project: Calvary Christian Church

Project Number: CCH01 001

Project Manager: Rebekah Westrup

CLS Work Order #: COH0777

COC #: 53600

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect

QR-02 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC

batch were accepted based on percent recoveries and completeness of QC data

A-01 The %D was above the criteria of 30% for this CCCs indicating a high bias in the system Associated sample results were ND

DEI Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

3249 Fitzgerald Road Rancho Cordova, CA 95742

August 19, 2005

CLS Work Order #: COH0488 COC #: 53510

Rebekah Westrup APEX Envirotech Inc. - Gold River 11244 Pyrites Way Gold River, CA 95670

Project Name: Calvary Christian Church

Enclosed are the results of analyses for samples received by the laboratory on 08/12/05 10:00 Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

08/19/05 11:16

APEX Envirotech Inc. - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0488

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53510

TPH-Gasoline by GC FID

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Domestic Well (COH0488-01) Water	Sampled: 08/10/	/05 11:15 R	eceived:	08/12/05 1	0:00				
Gasoline	ND	50	μg/L	1	CO06127	08/12/05	08/12/05	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		93.5 %	6.5-	135	"	"	r	"	

CA DOHS ELAP Accreditation/Registration Number 1233

08/19/05 11:16

APEX Envirotech Inc - Gold River

11244 Pyrites Way

Gold River, CA 95670

Project: Calvary Christian Church CLS Work Order #: COH0488

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53510

Semivolatile Organic Compounds by EPA Method 8270C

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Domestic Well (COH0488-01) Water	Sampled: 08/10	/05 11:15 R	eceived:	08/12/05 1	0:00				
Acenaphthene	ND	10	μg/L	1	CO06096	08/12/05	08/15/05	EPA 8270C	
Acenaphthylene	ND	10	**	11	п	34	Ш	. п	
Anthracene	ND	10	1*	II .	ш	"	n	II.	
Benzo (a) anthracene	ND	10	11	. 11	u	11	11	11	
Benzo (b) fluoranthene	ND	10	18	n	II	0	Ü	ij	
Benzo (k) fluoranthene	ND	10	**	n	ŋ	11	ii	U	
Benzo (g,h,i) perylene	ND	10	**	II	11	te	II	п	
Benzo (a) pyrene	ND	10	**	n	11	"	II .	II	
Benzyl alcohol	ND	10	**	"	II	**	u	и	
Bis(2-chloroethoxy)methane	ND	10	**	II	и.	17	н	14	
Bis(2-chloroethyl)ether	ND	10	11	п	ii	"	11	**	
Bis(2-chloroisopropyl)ether	ND	10	н	II	11)ı	n	n	
Bis(2-ethylhexyl)phthalate	ND	10	n	п	a	n	17	н	
4-Bromophenyl phenyl ether	ND	10	"	n	п	II .	**	"	
Butyl benzyl phthalate	ND	10	11	II	u	II	11	U	
4-Chloroaniline	ND	10	11	п	u	"	11	n	
2-Chloronaphthalene	ND	10	11	II	11	II	11	II .	
4-Chlorophenyl phenyl ether	ND	10	n	u	u	II	n	п	
Chrysene	ND	10	n	u	11	II .	"	II .	
Dibenz (a,h) anthracene	ND	10	II.	11	II.	II		II .	
Dibenzofuran	ND	10	n	п	11	II	II .	II .	
Di-n-butyl phthalate	ND	10	n	п .	++	u	n	ш	
1,2-Dichlorobenzene	ND	10	11	II	10	lt.	п	ú	
1,3-Dichlorobenzene	ND	10	"	u '	11	u		II	
1,4-Dichlorobenzene	ND	10	11	u	**	**		11	
3,3 -Dichlorobenzidine	ND	20	11	11	**	11	u	a	
Diethyl phthalate	ND	10	II.	u	Ħ	**	u	н	
Dimethyl phthalate	ND	10	U	u	77	11	п	17	
2,4-Dinitrotoluene (2,4-DNT)	ND	10	11	11	11	**	u	11	
2,6-Dinitrotoluene (2,6-DNT)	ND	10	"	11	"	**	11	**	
Di-n-octyl phthalate	ND	10	"	**	D	**	11	n	
Fluoranthene	ND	10	п	11	U	n	16	"	
Fluorene	NĎ	10	11	**	11	**	18	n	
Hexachlorobenzene	ND	10	II.	11	ij	н	77	n .	
Hexachlorobutadiene	ND	10	u	"	II	U	**	11	

08/19/05 11:16

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670

Project Number: CCH01 001 Project Manager: Rebekah Westrup

Project: Calvary Christian Church CLS Work Order #: COH0488

COC #: 53510

Semivolatile Organic Compounds by EPA Method 8270C

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Domestic Well (COH0488-01) Water	Sampled: 08/10	/05 11:15 R	eceived: (08/12/05 1	0:00				
Hexachlorocyclopentadiene	ND	10	μg/L	1	CO06096	08/12/05	08/15/05	EPA 8270C	
Hexachloroethane	ND	10	п	U	19	11	п	п	
Indeno (1,2,3-cd) pyrene	ND	10	17	н	11	ш	n .	H	
Isophorone	ND	10	**		п	II .	u	74	
2-Methylnaphthalene	ND	10	и	(1	11	11	n	ni .	
Naphthalene	ND	10	11	п	11	n	Ħ	II	
2-Nitroaniline	ND	25	11	I)	11	#	Ħ	n	
3-Nitroaniline	ND	25	n	11	17	п	11	n	
4-Nitroaniline	ND	25	TF	н	11	u	· ·	n	
Nitrobenzene (NB)	ND	10	п	11	II .	II	U	"	
N-Nitrosodiphenylamine	ND	10	п	II .	II .	II	n .	**	
N-Nitrosodi-n-propylamine	ND	10	n	и	n	n	12	**	
Phenanthrene	ND	10	11	11	н		77	u	
Pyrene	ND	10	tt	n	Ħ	11	11	n .	
1,2,4-Trichlorobenzene	ND	10	u	*1	11	п	O O	u	
Benzoic acid	ND	25	п	"		п	u u	n .	
4-Chloro-3-methylphenol	ND	10	п	п	n .	II.	II.	n	
2-Chlorophenol	ND	10	n	n	n	11	14	и	
2,4-Dichlorophenol	ND	10	**	Ħ	11	jŧ.	n	u	
2,4-Dimethylphenol	ND	10	u	tr	u	u	ĮI.	п	
4,6-Dinitro-2-methylphenol	ND	25	11	11	ш	II .	0	II .	
2,4-Dinitrophenol	ND	25	11	U	ш	μ	U		
2-Methylphenol	ND	01	n	D	n	n	D	**	
3 & 4-Methylphenol	ND	10	11	n	11	**	11	11t	
2-Nitrophenol	ND	10	16	н	10	Ħ	19	u	
4-Nitrophenol	ND	25	II .	TP	11*	II.	41	n .	
Pentachlorophenol	ND	25	II .	ш	u	11	11	п	
Phenol	ND	10	п	п	п	II .	U	n	
2,4,5-Trichlorophenol	ND	10	n.	п	11	п	n	D	
2,4,6-Trichlorophenol	ND	10	н .	п	ıı .	п		19	
Surrogate 2-Fluorophenol		53.5 %	21-1	10	"	,,	"	n	
Surrogate Phenol-d6		40.3 %	10-1		"	n	H	n	
Surrogate Nitrobenzene-d5		73.2 %	35-1		"	н	μ	"	
Surrogate 2-Fluorobiphenyl		676%	43-1		"	"	n	n .	
our oguic 2-1 morooipnenyi		0/0/0	7.7-1	10					

CA DOHS ELAP Accreditation/Registration Number 1233

08/19/05 11:16

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0488

Project Number: CCH01 001

COC #: 53510

Project Manager: Rebekah Westrup

Semivolatile Organic Compounds by EPA Method 8270C

Analyte	Rep Result	orting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Domestic Well (COH0488-01) Water	Sampled: 08/10/05 11	:15 R	eceived: (8/12/05 10	0:00				
Surrogate 2,4,6-Tribromophenol	6	83%	10-	123	CO06096	08/12/05	08/15/05	EPA 8270C	
Surrogate Terphenyl-dl4	6	34%	33-	141	μ	"	a	'n	

Fax: 916-638-4510

08/19/05 11:16

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670

Project Number: CCH01 001

Project Manager: Rebekah Westrup

Project: Calvary Christian Church CLS Work Order #: COH0488

COC #: 53510

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Domestic Well (COH0488-01) Water	Sampled: 08/10/	/05 11:15 R	eceived:	08/12/05 1	0:00				
Acetone	ND	10	μg/L	1	CO06178	08/17/05	08/17/05	EPA 8260B	
Benzene	ND	0 50	n	**	11	**	11	n	
Bromobenzene	ND	0.50	**	11	11	Ħ	п	II	
Bromochloromethane	ND	0.50	77	**	**	r.	"	. 0	
Bromodichloromethane	ND	0 50	10	ır	**	**	11	U	
Bromoform	ND	0 50	**	11	**	17	h	U	
Bromomethane	ND	10	ц	II .	H.	я	п	n	
2-Butanone	ND	10	н	II .	u	я	п	Ð	
n-Butylbenzene	ND	0 50		II .	II .	II .	U	11	
sec-Butylbenzene	ND	0 50		ji .	II .	"	n	**	
tert-Butylbenzene	ND	0.50	17	"	11	"	"	11	
Carbon tetrachloride	ND	0.50	R	n	ш	U	11	11	
Chlorobenzene	ND	0 50	**	77	0	U	FF	u	
Chloroethane	ND	0.50	18	**	n	"	**	u	
Chloroform	ND	0 50	u	11	10	n	·r	u	
Chloromethane	ND	1.0		11:	Tr.	*	п	II .	
o-Chlorotoluene	ND	0 50	11	II	u	**	ii .	II .	
p-Chlorotoluene	ND	0 50	п	II	11	11	ш	ŋ	
Dibromochloromethane	ND	0.50	п	n	11	u	п	11	
1,2-Dibromo-3-chloropropane	ND	10	11		11	u		H	
1,2-Dibromoethane (EDB)	ND	0 50	"	n	11	II	11	H	
Dibromomethane	ND	0.50	19	н	U	μ	n .	"	
1,2-Dichlorobenzene	ND	0.50	**	**	U	n	n	11	
1,3-Dichlorobenzene	ND	0 50	**	**	11	I)	н	11	
1,4-Dichlorobenzene	ND	0 50	11	11	11	11	и	**	
Dichlorodifluoromethane (Freon 12)	ND	1 0	**	**	19	11	н	H	
1.1-Dichloroethane	ND	0 50	u	17	11	11	17	71	
1,2-Dichloroethane	ND	0 50	u	u	**	11	"	**	
1,1-Dichloroethene	ND	0 50	u	11	11	1)	**	11	
cis-1,2-Dichloroethene	ИD	0 50	п	11	11	1)	17	a	
trans-1,2-Dichloroethene	ND	0.50	п	п	и	11	u	11	
1,2-Dichloropropane	ND	0.50	п	п	a	**	11	11	
1,3-Dichloropropane	ND	0.50	n	п	u	14	n n	n .	
2,2-Dichloropropane	ND	0.50	n	n	u	н	u	, iii	
1,1-Dichloropropene	ND	0.50	n	'n	11	19	п	ii .	

CA DOHS ELAP Accreditation/Registration Number 1233

08/19/05 11:16

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0488

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53510

Analyte	Result	Reporting Limit	Units	Dilutior	n Batch	Prepared	Analyzed	Method	Notes
Domestic Well (COH0488-01) Water	Sampled: 08/10	/05 11:15 R	eceived:	08/12/05	10:00				,,
cis-1,3-Dichloropropene	ND	0 50	μg/L	1	CO06178	08/17/05	08/17/05	EPA 8260B	
trans-1,3-Dichloropropene	ND	0 50	n	U	ij	1.6	ш	п	
Ethylbenzene	ND	0 50	n	п	n	"	ш	п	
1,1,2-Tricholoro-1,2,2-trifluoroethane (ND	0 50	")1	II	11	ш	7)	
Freon 113)									
Hexachlorobutadiene	ND	0.50	**	"	II	16	•	"	
2-Hexanone	ND	10	11	11)J	11	II	II .	
Isopropyibenzene	ND	0.50	77	U	D	lt.	II	II	
p-Isopropyltoluene	ND	0.50	"	"	II	lt	п	II	
Methylene chloride	ND	0.50	77	II .	n	18	п	"	
4-Methyl-2-pentanone	ND	10	**	11	II	11	"	11	
Methyl tert-butyl ether	ND	0 50	**	11	II	17	ш	II .	
Naphthalene	ND	0.50	11	IJ	n	11	ш	II .	
n-Propylbenzene	ND	0.50	"	IJ	11	18	ш	II	
Styrene	ND	0.50	**	19	11	11	u	II	
1,1,1,2-Tetrachloroethane	ND	0.50	t*	"	п	**	u	u u	
1,1,2,2-Tetrachloroethane	ND	0 50	7*	11	II	18	u	u u	
Tetrachloroethene	ND	0.50	**	n	U	11	11	II .	
Toluene	ND	0 50	**	n	IJ	19	ш	II.	
1,2,3-Trichlorobenzene	ND	0 50	**	11	II .	11	11	u	
1,2,4-Trichlorobenzene	ND	0.50	++	н	U	10	11	11	
1,1,1-Trichloroethane	ND	0.50	7*	11	11	**	18	u ·	
1,1,2-Trichloroethane	ND	0 50	17	11	n	**	11	**	
Trichloroethene	ND	0 50	Ħ	11	II .	19	18	11	
Trichlorofluoromethane	ND	0 50	17	н	II	19	18	17	
1,2,3-Trichloropropane	ND	0 50	11	n	11	17	10	11	
1,2,4-Trimethylbenzene	ND	0 50	u	,,	п	11	16	16	
1,3,5-Trimethylbenzene	ND	0 50	11	n	. п	11	19	u	
Vinyl chloride	ND	10	11	1)	IJ	19	10	**	
Xylenes (total)	ND	1.0	я	17	II.	19	н	16	
11,101100 (tout)	. ,						um.		
Surrogate 1,2-Dichloroethane-d4		98 1 %	66-	135	. "	n	"	rr .	
Surrogate Toluene-d8		881%		125	H	rt	"	"	
		106 %		125	"	ø	"	"	
Surrogate 4-Bromofluorobenzene		100 %	7.5-	12)					

08/19/05 11:16

APEX Envirotech Inc - Gold River

11244 Pyrites Way

Gold River, CA 95670

Project: Calvary Christian Church CLS Work Order #: COH0488

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53510

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CO06096 - EPA 3510B GC	MS									
Blank (CO06096-BLK1)				Prepared:	08/12/05	Analyzed	: 08/16/05			
Acenaphthene	ND	10	μg/L							
Acenaphthylene	ND	10	**			•				
Anthracene	ND	10	tr.							
Benzo (a) anthracene	ND	10	11							
Benzo (b) fluoranthene	ND	10	ii .							
Benzo (k) fluoranthene	ND	10	11							
Benzo (g,h,i) perylene	ND	10	п							
Benzo (a) pyrene	ND	10	H							
Benzyl alcohol	ND	10	n							
Bis(2-chloroethyl)ether	ND	10	1)							
Bis(2-chloroethoxy)methane	ND	10	11							
Bis(2-chloroisopropyl)ether	ND	10	**							
Bis(2-ethylhexyl)phthalate	ND	10	e							
I-Bromophenyl phenyl ether	ND	10	ш							
Butyl benzyl phthalate	ND	10	II .							
1-Chloroaniline	ND	10	II							
2-Chloronaphthalene	ND	10	п							
I-Chlorophenyl phenyl ether	ND	10	n							
Chrysene	ND	10	u							
Dibenz (a,h) anthracene	ND	10	u				*			
Dibenzofuran	ND	10	**							
Di-n-butyl phthalate	ND	10	10							
,2-Dichlorobenzene	ND	10	ü							
,3-Dichlorobenzene	ND	10	11							
,4-Dichlorobenzene	ND	10	a							
3 -Dichlorobenzidine	ND	20	11							
Diethyl phthalate	ND	10	II							
Dimethyl phthalate	ND	10	11							
2,4-Dinitrotoluene (2,4-DNI)	ND	10	11							
2,6-Dinitrotoluene (2,6-DNI)	ND	10	п							
Di-n-octyl phthalate	ND	10	11							

08/19/05 11:16

APEX Envirotech Inc. - Gold River

11244 Pyrites Way

Gold River, CA 95670

Project: Calvary Christian Church CLS Work Order #: COH0488

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53510

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CO06096 - EPA 3510B GCM	S									
Blank (CO06096-BLK1)				Prepared:	08/12/05	Analyzed	: 08/16/05			
luoranthene	ND	10	μg/L							
luorene	ND	10	71							
Hexachlorobenzene	ND	10	Ħ							
Hexachlorobutadiene	ND	10	11							
Hexachlorocyclopentadiene	ND	10	11							
HexachIoroethane	ND	01	11							
ndeno (1,2,3-cd) pyrene	ND	10	II.							
sophorone	ND	10	n ·							
2-Methylnaphthalene	ND	10	11							
Naphthalene	ND	10	n							
2-Nitroaniline	ND	25	**							
-Nitroaniline	ND	25	11							
-Nitroaniline	ND	25	**							
Vitrobenzene (NB)	ND	10	**							
N-Nitrosodiphenylamine	ND	10	**							
N-Nitrosodi-n-propylamine	ND	10	11							
Phenanthrene	ND	10	Œ							
Pyrene	ND	10	II.							
,2,4-Trichlorobenzene	ND	10	п							
Benzoic acid	ND	25	п							
-Chloro-3-methylphenol	ND	10	. "							
-Chlorophenol	ND	10	n							
,4-Dichlorophenoi	ND	10	n							
4,4-Dimethylphenol	ND	10	н	•						
,6-Dinitro-2-methylphenol	ND	25	"							
,4-Dinitrophenol	ND	25	u							
-Methylphenoi	ND	10	34							
& 4-Methylphenol	ND	10	77							
-Nitrophenol	ND	10	18							
-Nitrophenol	ND	25	**							
Pentachlorophenol	ND	25	a							

CA DOHS ELAP Accreditation/Registration Number 1233

08/19/05 11:16

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0488

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53510

Anaiyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CO06096 - EPA 3510B GCMS										
Blank (CO06096-BLK1)				Prepared:	08/12/05	Analyzed	1: 08/16/05			
Phenol	ND	10	μg/L							
2,4,5-I richlorophenol	ND	10	11							
2,4,6-Trichlorophenol	ND	10	n							
Surrogate 2-Fluorophenol	45 6		"	75 0		60 8	21-110	•		
Surrogate: Phenol-d6	37 2		"	75 O		49 6	10-110			
Surrogate: Nitrobenzene-d5	36 5		"	50 0		73 0	35-114			
Surrogate. 2-Fluorobiphenyl	368		"	.50 0		736	43-116			
Surrogate. 2 4 6-Tribromophenol	539		"	75 0		719	10-123			
Surrogate Terphenyl-dl4	.37 <i>9</i>		"	50 0		75 8	33-141			
LCS (CO06096-BS1)				Prepared:	08/12/05	Analyzed	: 08/16/05		~ ·	
Acenaphthene	35 6	10	μg/L	50 0		71.2	46-118			
1,4-Dichlorobenzene	35 0	10	ij	50.0		70 0	36-117			
2,4-Dinitrotoluene (2,4-DNI)	41 1	10	n	50 0		82 2	24-116			
N-Nitrosodi-n-propylamine	37 3	10	и	50.0		74.6	41-126			
Pyrene	35 1	10	U	50 0		70.2	26-127			
1,2,4-Irichlorobenzene	36 0	10	н	50 0		72.0	39-118			
4-Chloro-3-methylphenol	512	10	17	75 0		68.3	23-117			
2-Chlorophenol	49 9	10	19	75 0		66.5	23-134			
4-Nitrophenol	35 0	25	**	75 0		46.7	10-108			
Pentachlorophenol	63 0	25	**	75 0		84 0	10-113			
Phenol	35 1	10	19	75 0		46.8	5-112			
Surrogate 2-Fluorophenol	50 9		n	75 0	7.4	67.9	21-110			
Surrogate Phenol-d6	42 0		n	75 O		560	10-110			
Surrogate Nitrobenzene-d5	40 9		"	50 0		81.8	35-114			
Surrogate. 2-Fluorobiphenyl	40 7		μ	50.0		81 4	43-116			
Surrogate: 2.4.6-Tribromophenol	62.3		n	75 0		83.1	10-123			
Surrogate Terphenyl-dl4	39 5		"	50 0		79 O	33-141			

08/19/05 11:16

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0488

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53510

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CO06096 - EPA 3510B GCMS										
LCS Dup (CO06096-BSD1)				Prepared:	08/12/05	Analyzed	1: 08/16/05			
Acenaphthene	41.1	10	μg/I	50 0		82 2	46-118	14.3	31	
1,4-Dichlorobenzene	40 3	10	"	50 0		80 6	36-117	14 1	28	
2,4-Dinitrotoluene (2,4-DNI)	48.4	10	n n	50 0		96.8	24-116	16 3	38	
N-Nitrosodi-n-propylamine	43 9	10	п	50 0		87.8	41-126	163	38	
Pyrene	42 8	10	U	50 0		85 6	26-127	198	31	
1 2,4-Trichlorobenzene	41 6	10	п	50.0		83 2	39-118	14 4	28	
4-Chloro-3-methylphenol	57.7	10	II	75 0		76 9	23-117	119	42	
2-Chlorophenol	56 9	10	и	75 0		75 9	23-134	13 1	40	
4-Nitrophenol	41 4	25	ır	75.0		55 2	10-108	16 8	45	
Pentachlorophenol	75 6	25		75.0		101	10-113	182	45	
Phenol	40 0	10	II	75.0		53 3	5-112	13 0	42	
Surrogate 2-Fluorophenol	53 4		"	75 0		71 2	21-110			
Surrogate Phenol-d6	44 1		"	75 O		588	10-110			
Surrogate Nitrobenzene-d5	44 0		n	50 0		88 O	35-114			
Surrogate 2-Fluorobiphenyl	42 6		n	50 0		85 2	43-116			
Surrogate 2 4 6-Tribromophenol	66 9		n	75 O		89 2	10-123			
Surrogate Terphenyl-dl4	44 1		n	50 0		88 2	33-141			

08/19/05 11:16

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0488

Project Number: CCH01.001

Project Manager: Rebekah Westrup

COC #: 53510

TPH-Gasoline by GC FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
1 mary c	Tesan								-	
Batch CO06127 - EPA 5030 Water GC										
Blank (CO06127-BLK1)				Prepared:	08/12/05	Analyzed	1: 08/15/05			
Gasoline	ND	50	μg/L							
Surrogate o-Chlorotoluene (Gas)	194		u	20 0		97 0	65-135			
LCS (CO06127-BS1)				Prepared:	08/12/05	Analyzed	1: 08/15/05			
Gasoline	. 511	50	μg/L	500		102	65-135			
Surrogate o-Chlorotoluene (Gas)	20 6		,,	20 0		103	65-135			
LCS Dup (CO06127-BSD1)				Prepared:	08/12/05	Analyzed	1: 08/15/05			
Gasoline	484	50	μg/L	500		96 8	65-135	5 43	30	
Surrogate o-Chlorotoluene (Gas)	20 0	*	"	20 0		100	65-135			
Matrix Spike (CO06127-MS1)	So	urce: COH04	189-01	Prepared:	08/12/05	Analyzed	1: 08/15/05	Aur.		
Gasoline	445	50	μg/L	500	ND	89 0	68-132			
Surrogate o-Chlorotoluene (Gas)	20 3		"	20 0		102	65-135			
Matrix Spike Dup (CO06127-MSD1)	So	urce: COH04	189-01	Prepared:	08/12/05	Analyzed	1: 08/15/05			
Gasoline	440	50	μg/L	500	ND	88 0	68-132	1 13	32	
Surrogate o-Chlorotoluene (Gas)	20 1	******	н	20 0		100	65-135			

08/19/05 11:16

APEX Envirotech Inc. - Gold River

Project: Calvary Christian Church CLS Work Order #: COH0488

11244 Pyrites Way Gold River, CA 95670 Project Number: CCH01 001

COC#: 53510

Project Manager: Rebekah Westrup

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CO06178 - EPA 5030 Wate	er MS		•							
Blank (CO06178-BLK1)	•			Prepared	& Analyzo	d: 08/17/0)5			
Acetone	ND	10	μg/I							
Benzene	ND	0 50	(t							
Bromobenzene	ND	0 50	п							
Bromochloromethane	ND	0 50	a							
Bromodichloromethane	ND	0 50	ц							
Bromoform	ND	0 50	11							
Bromomethane	ND	10	u							
2-Butanone	ND	10	п							
n-Butylbenzene	ND	0.50	п							
sec-Butylbenzene	ND	0 50	п							
tert-Butylbenzene	ND	0 50	II.							
Carbon tetrachloride	ND	0 50	II.							
Chlorobenzene	ND	0 50	п							
Chloroethane	ND	0 50	п							
Chloroform	ND	0 50	II							
Chloromethane	ND	10	U							
o-Chlorotoluene	ND	0 50	U							
p-Chlorotoluene	ND	0.50	п							
Dibromochloromethane	ND	0 50	n							
1,2-Dibromo-3-chloropropane	ND	10	n							
1,2-Dibromoethane (EDB)	ND	0.50	11							
Dibromomethane	ND	0.50	11							
1 2-Dichlorobenzene	ND	0 50	II							
1,3-Dichlorobenzene	ND	0 50	n							
1,4-Dichlorobenzene	ND	0 50	n							
Dichlorodifluoromethane (Freon 12)	ND	10	n							
1,1-Dichloroethane	ND	0.50	n							
1,2-Dichloroethane	ND	0 50	n							
1,1-Dichloroethene	ND	0 50	1)							
cis-1,2-Dichloroethene	ND	0 50	п							
trans-1 2-Dichloroethene	ND	0.50	11							

08/19/05 11:16

RPD

APEX Envirotech Inc - Gold River

Source

Project: Calvary Christian Church CLS Work Order #: COH0488

11244 Pyrites Way Gold River, CA 95670 Project Number: CCH01 001

Reporting

COC #: 53510

%REC

Project Manager: Rebekah Westrup

Spike

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CO06178 - EPA 5030 Water	MS									
Blank (CO06178-BLK1)				Prepared .	& Analyze	ed: 08/17/0	05			
1,2-Dichloropropane	ND	0 50	μg/L							
1,3-Dichloropropane	ND	0 50	O.							
2 2-Dichloropropane	ND	0 50	n n							
1,1-Dichloropropene	ND	0 50	U							
cis-1,3-Dichloropropene	ND	0 50	U							
rans-1,3-Dichloropropene	ND	0 50	11							
Ethylbenzene	ND	0 50	11							
1,1,2-Tricholoro-1,2,2-trifluoroethane (Freon 113)	ND	0 50	11							
Hexachlorobutadiene	ND	0 50	18							
-Hexanone	ND	10	**							
sopropylbenzene	ND	0.50	II .							
-Isopropyltoluene	ND	0 50	II							
1ethylene chloride	ND	0 50	II							
-Methyl-2-pentanone	ND	10	U							
lethyl tert-butyl ether	ND	0 50	n							
Japhthalene	ND	0 50	**							
-Propylbenzene	ND	0 50	**							
tyrene	ND	0 50	œ							
,1,1,2-Tetrachloroethane	ND	0 50	п							
,1,2,2-I etrachloroethane	ND	0.50	11							
etrachloroethene	ND	0 50	O .							
oluene	ND	0 50	11							
2 3-Trichlorobenzene	ND	0 50	11							
,2,4-Trichlorobenzene	ND	0 50	n .							
1 1-Trichloroethane	ND	0 50	n							
1 2-Trichloroethane	ND	0.50	11							
richloroethene	ND	0.50	79							
richlorofluoromethane	ND	0.50	**							
,2,3-Trichloropropane	ND	0 50	n							
,2,4-Trimethylbenzene	ND	0.50	u							

08/19/05 11:16

APEX Envirotech Inc - Gold River

11244 Pyrites Way Gold River, CA 95670 Project: Calvary Christian Church CLS Work Order #: COH0488

Project Number: CCH01 001

Project Manager: Rebekah Westrup

COC #: 53510

Analyte	Reporting			Spike	Source		%REC		RPD	
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CO06178 - EPA 5030 Wate	er MS									
Blank (CO06178-BLK1)	Prepared & Analyzed: 08/17/05								·	
1.3,5-Trimethylbenzene	ND	0 50	μg/L						•	
Vinyl chloride	ND	10	41							
Xylenes (total)	ND	10	n							
Surrogate 1 2-Dichloroethane-d4	9 76		11	100		97 6	66-135			
Surrogate Toluene-d8	8 83		"	100		883	72-125			
Surrogate 4-Bromofluorobenzene	107		"	10 0		107	73-125			
LCS (CO06178-BS1)	Prepared & Analyzed: 08/17/05									
Benzene	21 0	0 50	μg/L	20 0		105	60-135			
Chlorobenzene	19 3	0 50	IJ	20 0		96 5	60-133			
1,1-Dichloroethene	23 5	0 50	111	20 0		118	42-150			
Ioluene	19 7	0 50	n	20 0		98 5	60-137			
Trichloroethene	20 9	0 50	н	20 0		104	62-140			
Surrogate 1.2-Dichloroethane-d4	8 98		μ	10 0		898	66-135			
Surrogate. Toluene-d8	9 23		"	10 0		92 3	72-125			
Surrogate 4-Bromofluorobenzene	9 69		b.	10 0		96.9	73-125			
LCS Dup (CO06178-BSD1)	Prepared & Analyzed: 08/17/05									
Benzene	18 5	0 50	μg/L	20 0		92 5	60-135	12 7	25	
Chlorobenzene	17 3	0 50	n n	200		86.5	60-133	109	25	
1,1-Dichloroethene	20 0	0 50	U	20 0		100	42-150	161	25	
Toluene	172	0 50	1),	20 0		86 0	60-137	13 6	25	
Irichloroethene	180	0.50	н	20 0		90 0	62-140	149	25	
Surrogate 1.2-Dichloroethane-d4	9 22		n	10 0	V-10-7	92 2	66-135			
Surrogate Toluene-d8	9 28		n	10 0		928	72-125			
Surrogate 4-Bromofluorobenzene	9 84		"	10 0		98.4	73-125			

08/19/05 11:16

APEX Envirotech Inc. - Gold River

Project: Calvary Christian Church CLS Work Order #: COH0488

11244 Pyrites Way

Project Number: CCH01 001

COC #: 53510

Gold River, CA 95670 Project Manager: Rebekah Westrup

Notes and Definitions

DET Analyte DETECTED

Analyte NOI DETECTED at or above the reporting limit ND

NR Not Reported

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD